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Abstract: National cancer databases document that melanoma is the most aggressive and deadly
cutaneous malignancy with worldwide increasing incidence in the Caucasian population. Around
10% of melanomas occur in families. Several germline mutations were identified that might help to
indicate individuals at risk for preventive interventions and early disease detection. More than 50%
of sporadic melanomas carry mutations in Ras/Raf/mitogen-activated protein kinase (MAPK/MEK)
pathway, which may represent aims of novel targeted therapies. Despite advances in targeted
therapies and immunotherapies, the outcomes in metastatic tumor are still unsatisfactory. Here,
we review animal models that help our understanding of melanoma development and treatment,
including non-vertebrate, mouse, swine, and other mammal models, with an emphasis on those
with spontaneously developing melanoma. Special attention is paid to the melanoma-bearing
Libechov minipig (MeLiM). This original swine model of hereditary metastatic melanoma enables
studying biological processes underlying melanoma progression, as well as spontaneous regression.
Current histological, immunohistochemical, biochemical, genetic, hematological, immunological,
and skin microbiome findings in the MeLiM model are summarized, together with development
of new therapeutic approaches based on tumor devitalization. The ongoing study of molecular
and immunological base of spontaneous regression in MeLiM model has potential to bring new
knowledge of clinical importance.

Keywords: melanoma; mutation; genetics; animal model; swine; MeLiM; progression; spontaneous
regression; devitalization

1. Introduction

Skin cancer is a heterogeneous group of oncological diseases that demonstrate worldwide
increasing incidence and include cutaneous melanoma (also known as malignant melanoma) and
non-melanoma skin cancers (with basal cell carcinoma and squamous cell carcinoma being the most
frequent). Non-melanoma skin cancers are more frequent, affect mainly the elderly population, and
demonstrate relatively lower aggressiveness, metastatic activity, and mortality. On the contrary,
melanoma represents the least frequent but most aggressive skin cancer resulting in 65% of all skin
cancer deaths. Skin damage caused by sunlight (ultraviolet radiation) exposure is the main risk factor
for development of such skin malignancies [1–4].

Melanoma cells arise from neoplastic transformation of melanocytes, which are pigmented cells
originating from melanoblasts. Melanoblasts are non-pigmented precursors derived from multipotent
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neural crest cells, which migrate during embryonic development to the target tissues. Mature pigmented
melanocytes are dispersed in the basal layer of the epidermis and in hair follicles, where they are
responsible for skin and hair color. Moreover, melanocytes are naturally present in the iris of the eye,
inner ear, nervous system, heart, and other organs [5]. The cutaneous melanoma is the most frequent
form. Rarely, neoplastic transformation can arise during fetal development, manifesting as neonatal
congenital melanoma [6]. More common is postnatal neoplastic transformation, giving rise to several
distinct melanoma variants [7]. In affected humans, long-term monitoring of growing skin lesions and
their particular biological analyses are not possible for ethical reasons. Thus, various animal models
serve as indispensable objects for detailed research of melanoma and development of new therapeutic
procedures. Swine represents an invaluable model with anatomical and physiological resemblance
and considerably similar skin architecture to human [8,9].

2. Human Melanoma

2.1. Incidence

The incidence of cutaneous melanoma steadily increased over the last 50 years, particularly in
fair-skinned populations in Europe, North America, Australia, and New Zealand [10]. The highest
incidence is recorded in Queensland, Australia (approximately 50 cases per 100,000 people per year);
in European populations, the incidence reaches 15–20 cases per 100,000 per year [11]. Almost 100,000
new cases are predicted to be diagnosed in 2019 in the United States, making melanoma the fifth most
frequently diagnosed cancer [12]. Rising incidence was also reported for young and middle-aged
people [10,13]. The increasing incidence is accompanied by increasing mortality from such a disease.
However, due to education on melanoma prevention, early diagnosis, and advances in treatment,
a descent in mortality is expected in the following years, at least in developed countries.

2.2. Risk Factors

The risk of melanoma development depends mainly on interaction between environmental
exposure and susceptibility of the host [13]. The major environmental cause of melanoma is sun
exposure, particularly intermittent (short and intense) sun exposure and the number of sunburns [14].
Additional environmental factors, such as exposure to cosmic radiation (e.g., in airway pilots and
crew), polycyclic aromatic hydrocarbons, benzene, heavy metals, and other chemicals, were suggested
to play a part in the etiology of the disease. However, the information from studies of such factors is
not strong [14].

The most important host risk factors are the number and type of melanocytic nevi. Presence of a
high number of nevi, large nevi (diameter over 2 mm), and/or dysplastic or atypical nevi, even on
body parts not chronically exposed to sunlight, is associated with an increased risk of melanoma [14].
For example, individuals with more than 100 normal nevi are at almost seven-fold higher risk than
people with fewer than 15 nevi [14]. Skin, hair, and eye colors, ability to tan, and propensity to burn
are additional host factors influencing melanoma development [13,14]. As approximately 10% of
cases occur in families, genetic factors contribute to the susceptibility to melanoma. The discovery
of melanoma susceptibility genes and their mutations could lead to development of more accurate
prediction and screening tools to identify high-risk populations and to identify new therapeutic targets
or prevention strategies [14,15].

2.3. Genetic Background in Melanoma

2.3.1. Germline Mutations in Familial Melanoma

In the human population, an increased incidence of melanoma observed in relatives of affected
individuals led to the suggestion of a hereditary cause [16]. First genetic studies on melanoma cell lines
established from patient metastases identified loss of heterozygosity in several autosomal and X-linked
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loci [17]. Five years later, deletion within the human chromosome 9p.21 region was identified [18].
The linkage analysis of melanoma prone families from Australia confirmed the existence of a melanoma
susceptibility gene in region 9p [19]. Kamb et al. identified a candidate gene in the 9p region as
the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene, encoding the p16INK4A protein, which is
an inhibitor of cyclin-dependent kinase 4 (CDK4). All three identified mutations in the CDKN2A
gene changed the p16 amino-acid sequence [20]. Many CDKN2A gene mutations were later observed
in populations of various countries including southern Sweden [21], Massachusetts, United States
of America (USA) [22], United Kingdom [23], France [24], and Queensland, Australia, where the
mutations were found only in high-risk families [25]. An additional transcript variant of CDKN2A gene
was discovered in 1995 by Quelle et al., sharing exons 2 and 3 with p16 but having a different exon 1,
and was named p19ARF in mouse [26]. The human counterpart (p14ARF) was identified three years
later [27]. Currently, germline CDKN2A mutations are observed in 20–40% of families with hereditary
melanoma across continents [28]. More than 60 different mutations in the CDKN2A gene were found
in hereditary melanoma families, with the majority of them represented by missense mutations in
p16 [29]. In contrast, incidence of somatic CDKN2A mutations in sporadic melanomas is very low [30].

In 1995, a mutated CDK4 was found in cultured melanoma cells and metastatic tissue. This mutation
prevented binding of p16INK4A to CDK4, thus obstructing inhibition of the CDK4 enzyme activity [31].
A CDK4 mutation was later found in two unrelated melanoma families [32], and the role of CDK4
mutations in melanoma development was confirmed [24]. In 17 familial melanoma pedigrees, two
germline mutations in CDK4 were observed by Puntervol et al. [33]. Both CDKN2A and CDK4 represent
high-susceptibility genes for malignant melanoma, i.e., mutation in such genes greatly increases the
chance of melanoma development.

Additional gene mutations were identified as causal for predisposition to melanoma itself or
in combination with other cancers in the last decade. Germline mutations in the breast cancer 1
(BRCA1)-associated protein-1 (BAP1) gene were found in highly metastatic uveal melanoma [34] and
later also in familial cutaneous melanoma [35,36]. The BAP1 mutations frequently lead to loss of BAP1
expression (e.g., due to homozygous deletions, premature stop codon, or missense mutations). Loss of
BAP1 expression was observed in 5% of cutaneous melanomas by immunohistochemistry [37]. The BAP1
functions as part of the DNA damage response proteins promoting repair of DNA double-strand
breaks [38]. However, the exact mechanism of BAP1 mutations that promote melanoma genesis is yet
to be elucidated [39].

Germline mutation in telomerase reverse transcriptase (TERT gene) [40] and other proteins,
which protect the ends of chromosomes from deterioration and the cells from senescence, were also
reported in melanoma affected families. Mutations in the protection of telomeres 1 (POT1) gene may
lead to insufficient capping of telomeres by the shelterin complex and may also regulate telomerase
function [39]. Loss-of-function, missense mutations or other POT1 variants were observed in familial
melanoma patients in the United Kingdom, the Netherlands, and Australia [41] and in another
study also in Italy, USA, and France [42]. Incidence of pathogenic germline mutations of POT1 is
low (~2–5%) [43]. Mutation in additional shelterin complex genes (adrenocortical dysplasia protein
homolog, ACD; telomeric repeat-binding factor 2-interacting protein 1, TERF2IP) were found in familial
melanoma patients [44].

Mutations in the microphthalmia (mi) locus in mice are causative for several defects, including small
unpigmented eyes and lack of skin melanocytes [45]. A human homolog, microphthalmia-associated
transcription factor (MITF) gene codes for a transcription factor activating expression of tyrosinase,
a rate-limiting enzyme in melanin biosynthesis [46]. MITF is also a major transcriptional regulator of
melanoma inhibitor of apoptosis (ML-IAP) expression in melanoma tissues. This suggests that MITF
has pro-survival activity in melanoma progression [47]. MITF germline mutations increase risk of
cutaneous melanoma development by three- to five-fold [39]. MITF amplification is more prevalent in
metastatic disease and correlated with decreased patient survival [48]. Mutations in the MITF gene are
found not only in melanomas but also in other cancers, such as renal cell carcinoma [49].
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As mutations in high-susceptibility genes greatly increase risk of melanoma development,
individuals carrying CDKN2A, CDK4, BAP1, POT1, or MITF mutations should be educated on the
importance of melanoma prevention and early detection and should undergo regular medical skin
examination [15]. Unfortunately, it still remains uncertain how these mutations influence patient
phenotypes, as the melanoma risk is influenced by variations in penetrance, environmental exposure,
and coinheritance with low-susceptibility genes [29,39].

Low-susceptibility genes are genes with variants increasing risk of melanoma development with
lower penetrance. Melanocortin 1 receptor (MC1R) gene variants are associated with red hair and fair
skin, a skin phototype with higher risk of melanoma development [50,51]. Presence of MC1R variants,
together with CDKN2A mutations, significantly increases melanoma risk [52].

The protective role of calcitriol, a hormonal derivate of vitamin D3, was confirmed in melanoma
studies [53,54]. Several polymorphisms of the vitamin D receptor (VDR) gene have a supporting effect
in melanoma formation and correlate with a negative outcome in affected patients [55].

Epidermal growth factor (EGF) is relevant to wound healing, proliferation of epidermal tissues, and
tumorigenesis. Functional polymorphisms of this gene are associated with melanoma development [56].

Many other gene variants may increase melanoma risk. Due to the only partial penetration
and combination with other (host, environmental) factors, low-susceptibility genes are difficult
to identify. More detailed information and additional gene candidates can be found in several
reviews [14,39,57–60]. Genome-wide association studies (GWAS) are used to investigate the entire
genomes for single-nucleotide polymorphisms or other gene variants associated with diseases. GWAS
allow examination of genes previously not known to be connected to a disease, especially in
polygenic diseases with incomplete penetrance, such as many cancers. Results from 11 GWAS
in melanoma identified more than 20 loci, including skin pigmentation, epidermal development,
telomere maintenance, and cell-cycle progression gene loci, to be associated with melanoma [61].
Pigmentation-related genes, such as MC1R (discussed above), oculocutaneous albinism type 2 (OCA2),
Agouti signaling protein (ASIP), tyrosinase (TYR), Tyrosinase-related protein 1 (TYRP1), solute carrier
family 45 member 2 (SLC45A2), and a locus encoding interferon regulatory factor 4 (IRF4) and exocyst
complex component 2 (EXOC2), associate with increased risk of melanoma and also other cutaneous
malignancies (basal cell carcinoma, squamous cell carcinoma) [62,63].

2.3.2. Somatic Mutations in Sporadic Melanoma

The majority (~90%) of cutaneous melanoma cases occur sporadically without any records in
family pedigree. Such tumors result from somatic mutations and other changes accumulated in the
pigmented tissues during the life of an individual. In the majority of sporadic human melanomas,
mutations activating the mitogen-activated protein kinase (MAPK/MEK) pathway (Figure 1) are
present, affecting mainly BRAF, NRAS, or neurofibromin 1 (NF1) genes (see below).

BRAF encodes B-Raf signal transduction serine–threonine kinase regulated by Ras and activating
the MAPK signaling cascade [64]. About 50% of cutaneous melanomas carry a mutation in BRAF gene,
which is in approximately 50% cases represented by V600E substitution, followed by V600K (10–15%)
and several less frequent mutations [65]. Interestingly, mutation BRAF V600E was detected also in a
majority of benign nevi [65].

The Ras proteins are essential regulators the MAPK and the phosphatidylinositol 3-kinase (PI3K)
pathways [66]. In 10–15% of melanomas, mutations in NRAS occur, predominantly in codon 61.
Such NRAS mutations are an adverse prognostic factor [67]. Mutations in KRAS are rare in cutaneous
melanoma (2% of cases), in contrast to other cancers such as colorectal cancer [67]. Interestingly, KRAS
mutations were detected in several mouse melanoma models and melanoma cell lines [67].
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Figure 1. Mitogen-activated protein kinase (MAPK/MEK) and phosphatidylinositol 3-kinase (PI3K)/
protein kinase B (Akt) pathways involved in sporadic melanoma. Mutations frequently present in
melanoma tissue are highlighted in red.

Neurofibromin 1 is a negative regulator of Ras. NF1 inactivation leads to the constitutive activation
of the MAPK and PI3K pathways. Mutations inactivating NF1 were reported in approximately 50% of
melanomas [66].

Increased expression of receptor tyrosine protein kinase erbB-3, also known as human epidermal
growth factor receptor 3 (HER3), a member of the EGFR family of receptor tyrosine kinases, was
described as a marker of poor prognosis in melanoma [65]. Less than 2% of cutaneous melanomas
carry mutation in transmembrane receptor tyrosine kinase KIT [11,65].

Amplifications of the MITF gene were observed in 20% of metastatic melanomas and are associated
with decreased five-year survival. It was suggested that MITF can be activated by the MAPK pathway
in malignant melanoma development [66].

Mutation in other molecules and pathways outside of the MAPK pathway were also reported in
sporadic melanoma, e.g., mutations and deletions in phosphatase and tensin homolog (PTEN), which
encodes a phosphatase and a key regulator of the PI3K signaling pathway, as well as mutations in p53,
telomerase catalytic subunit TERT, cell-cycle regulating proteins, and many others [65,66,68].

According to the most prevalent significantly mutated genes, The Cancer Genome Atlas Network
recently provided a schema for cutaneous melanoma genomic classification into four subtypes: mutant
BRAF, mutant RAS, mutant NF1, and triple-WT (wild-type) [69]. Elucidation of important mutations
in melanoma led in the last decade to the development of targeted therapies that improved survival of
melanoma and also other cancer patients. The examples include B-Raf inhibitors that are used in B-Raf
V600E and V600K mutated cancers or MEK inhibitors for treatment cancers with activated upper parts
of the MAPK cascade [64]. The genetic classification of melanoma represents a significant step toward
personalized medicine from both prognostic and treatment points of view [70].

2.4. Regression

Spontaneous regression is a disappearance of the tumor or its part in the absence of any treatment.
It occurs more frequently in melanoma than in other human tumors [71]. However, this observation
might be biased by easier identification and visualization of cutaneous tumor regression compared to
internal cancers such as breast cancer and colon cancer [72]. Signs of depigmentation can develop in
local parts of the melanoma lesions. Such partial regression is observed in about 20% of primary human
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melanomas. The complete melanoma regression is a very rare phenomenon with only 57 described
cases in years 1866–2009 [73] or 52 well-documented cases in the literature between 1963 and 2014 [74].

Spontaneous regression is probably related to high immunogenicity of the malignant melanoma,
which is able to attract infiltrating immune cells into the tissue. These cells then destroy the tumor and
create an inflammatory environment that further activates the immune system [75,76]. The possible
triggers of regression may include trauma (including surgery), infection, or immune response of
the patient [73,77]. Histopathologically, the early regression involves inflammatory changes with
lymphocytic infiltration, as well as the presence of melanophages [73]. Later, dense fibrotic tissue is
formed with few or no lymphocytes, and the tissue changes are similar to those observed in a scar [78].

Opinions on the prognostic significance of spontaneous regression remained controversial for
years. On the base of current clinical and histological data, the regression of melanoma seems to
be a positive prognostic factor associated with a lower possibility of metastases in sentinel lymph
nodes [78,79].

2.5. Therapy of Melanoma

Current melanoma therapies rely mainly on surgical excision, chemotherapy, targeted therapy,
and immunotherapy. Tumors in situ are treated by surgical excision, which is highly effective for
early cancer stages and patients with early diagnosed melanoma (stage 1A or 1B), showing a 10-year
survival rate of 94–98% [80]. Surgery may be combined with lymphadenectomy in patients with
positive findings in sentinel lymph node biopsy. In specific cases, the surgery may be combined with
radiotherapy [70]. Metastatic disease is mostly inaccessible by surgery. Chemotherapy is used in
selected late-stage melanoma patients with progressive or relapsed disease [81].

The identification of mutations in the B-Raf kinase constitutively activating the MAPK pathway
triggered new targeted therapies with small-molecule inhibitors of B-Raf and/or MEK kinases. These
inhibitors initially showed an excellent response with a significant reduction of tumor burden.
Unfortunately, MAPK inhibitors frequently face the development of drug resistance within months of
application [81,82].

As melanoma is a highly immunogenic tumor, attempts to boost the patient’s immune system
against the tumor by immunotherapy or vaccines are applied in advanced melanoma stages. Since
1998, interleukin-2 (IL-2) was approved for such a purpose, followed by interferon α-2b (IFNα-2b) in
2011 [81]. Current immunotherapies are aimed at increasing cytotoxic cluster of differentiation 8 (CD8)+

cell number or efficacy, mostly by targeting cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4)
and the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PDL-1) pathways [70].
Development of such drugs, called immune checkpoint inhibitors, marks a major progress in treatment
of several solid tumors including metastatic melanoma [81]. Additional immune checkpoint inhibitors
targeting new molecules are in clinical trials [83–85]. Numerous clinical trials are also ongoing to
explore efficacy, safety, and tolerability of immunotherapies in combination with chemotherapy, MAPK
pathway inhibition, oncolytic viruses, gut microbiota modulation, and other approaches [83,84,86].

3. Animal Models

Direct melanoma research in affected humans is not possible for procedural and ethical reasons.
Therefore, various animal models were developed that allow detailed study of cancer development,
growth, and metastasis, as well as potential therapy of this life-threatening disease. Selected animal
models are introduced in the sections below with an emphasis on those with spontaneously
developing melanoma.

3.1. Non-Mammalian Models

Non-mammalian species, particularly Drosophila melanogaster and Danio rerio, are popular to study
the development of various diseases including cancer, mainly because of easy breeding, short generation
interval, and the possibility of genetic modification, allowing cell transplantation experiments and
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drug screening [87–90]. Optical transparency of certain models/developmental stages is advantageous
for in vivo imaging [90].

Non-vertebrate species such as fruit fly (Drosophila melanogaster) are particularly useful for the
study of gene and pathway regulations associated with tumor development or progression [91].
Current transgenic tools allow knockdown or overexpression of any fruit-fly gene in almost any tissue
at any stage of development or adulthood [90]. In melanoma, fruit fly was used to study the effect of
Tum1 (tumorous-lethal) mutation on melanotic neoplasm growth [92].

Central American fish Xiphophorus was historically among the first fishes in cancerogenesis studies,
as, in this fish, various cancers, including melanoma, spontaneously evolve in nature. In 1928, monitoring
of Xiphophorus offspring led to the discovery of hereditary melanoma transmitted by Mendelian genetics.
Such experiments laid a base for existence of cancer-causing genes, currently called “oncogenes” [88,93].
In Xiphophorus, melanoma can be also induced by various physical and chemical means, such as
ultraviolet (UV) radiation [94,95], X-rays, N-methyl-N-nitrosourea, or N-ethyl-N-nitrosourea [93].
A Xiphophorus gene associated with aggressive melanoma formation was identified as Xiphophorus
melanoma receptor tyrosine-protein kinase (Xmrk). The Xmrk gene encodes a membrane tyrosine kinase,
which has homology to the epidermal growth factor receptor (HER gene) [96].

Zebrafish (Danio rerio) was the first fish species used to study chemical cancerogenesis [87].
Availability of genetic manipulation enabled generation of transgenic zebrafish models. Patton et al.
generated transgenic zebrafish expressing common V600E mutant BRAF under the control of the MITF
promotor. In p53-deficient fish, activated B-Raf induced development of invasive melanomas [97].
Since that time, many transgenic zebrafish models were created for oncogenesis studies [98–102].
Transplantation experiments revealed that human melanoma cells grafted to zebrafish kept their
phenotype, i.e., proliferated, migrated, stimulated angiogenesis, and produced melanin [103].
Transplantation of the ZMEL1 melanoma cell line derived from a transgenic zebrafish into transparent
zebrafish strain reliably gives rise to widespread metastases [104].

Medaka (Oryzias latipes) represents an additional fish model for melanoma studies. Medaka is
easy to breed, produces externally developing transparent embryos, does not have naturally occurring
tumors, and transgenic technologies are available to modify its genome. Transgenic medaka was
developed to express the Xmrk gene under the control of a pigment cell-specific promoter. Several
stable transgenic medaka lines with spontaneously developing melanomas at 100% penetrance were
created [105]. The transcriptomic comparison of medaka and human melanoma revealed molecular
conservation between fish models and human tumors at various levels, including the expression of
classical melanoma markers, upregulation of N-cadherin, downregulation of E-cadherin, inhibitors of
cell-cycle, growth-promoting genes, and inhibitors of apoptosis [106].

3.2. Mammalian Models

3.2.1. Mouse Models

The first mouse melanoma models were created by the subcutaneous application of melanoma
cells [107] or chemical induction [108]. Later, for study of genetically determined melanoma, the
transgenic mice were developed by integration of a recombinant gene comprising the tyrosinase
promoter and the simian virus 40 early (SV40E) region. Affected animals developed ocular
and cutaneous melanomas, which were histopathologically similar to the human ones [109].
These Tyr-SV40E mice were used in a donor–acceptor study, where grafts of full-thickness skin
from a high-susceptibility line were transplanted to the host of a low-susceptibility line (of the same
inbred strain). Pigment cells persisted as expected; however, at the outermost rim of all the grafts,
a blackened edge arose. Later, the hyperpigmentation spread to surrounding skin, and one or more
cases of local thickening arose, signaling vertical growth. These tissue areas became early melanomas.
It was noteworthy that all melanomas were strictly confined within the grafts. The origin of melanomas
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from the host grafts was confirmed by Southern blot analysis of DNA [110]. These results indicate that
mouse is a useful model for both allograft and xenograft studies [111].

In 1996, spontaneous melanoma formation was observed as a side effect of the construction of a
transgenic mouse strain. Such a result showed how uncontrollable the insertion of genetic information
can be, affecting areas other than originally intended [112]. Affected animals from this study were
used for establishment of a transgenic melanoma-bearing mouse line that allows the detailed study of
development and spreading of melanoma lesions in mice [113].

Current melanoma research relies mostly on syngeneic, xenograft, and genetically engineered
models. In syngeneic models, mouse melanoma cells are inoculated into inbred animals of the same
genetic background. Due to the presence of a fully functional immune system, syngeneic models
allow the investigation of melanoma behavior, metastases formation [114], and immune cell role in
tumor microenvironment or cancer immunotherapies [115]. The most commonly used model is B16
melanoma cell grafting to C57BL/6 mice [116].

Severe combined immunodeficiency (SCID) mice became one of the most popular animal models of
many human diseases including cancer due to the possibility of inoculating different cell lines and even
xenografts without rejection. Patient tumor-derived xenografts (PDX) into immunocompromised mice
are widely used to study the response to therapeutic agents [117] or metastasis formation [116]. However,
PDX mice lack a functional immune system, which hampers the investigation of immunotherapies.
Thus, mouse PDX models with partially or completely humanized immune systems were recently
developed. The human immune system can be introduced to irradiated or immunodeficient mice by
grafting of purified human CD34+ hematopoietic stem cells [118].

Genetically engineered mouse models are extensively used to study the effects of genetic alterations
in melanoma initiation, progression, and metastasis, as well as for drug efficacy assessment [116].
Transgenic models were the subject of several recent reviews, where detailed information can be
found [116,119,120]. The presence of germline mutations in genetically engineered mouse models
may affect developmental and reproductive fitness, as well as lead to the formation of tumors in other
tissues [119]. Inducible or tissue-specific gene expression may help to overcome such limitations.
For that purpose, RCAS/TVA mouse models were developed. Such systems use an RCAS viral vector,
derived from the avian sarcoma-leukosis virus, which can deliver genes up to 3 kb. Mammalian
cells to be affected by this vector must be engineered to express receptors allowing avian virus entry
(TVA) on their surface, e.g., transgenic mice expressing TVA early in melanocyte development from
the tyrosinase-related protein 2 (TRP2) promoter [119]. The RCAS/TVA model allows investigation
of the carcinogenic potential of candidate oncogenes in somatic cells in vivo [121]. A different
model uses conditional melanocyte-specific expression of BRAF V600E mutation combined with
conditional PTEN tumor suppressor gene silencing under the control of Cre recombinase expression
from the tyrosinase promoter (BPT-mouse), leading to metastatic melanoma formation with 100%
penetrance [122]. The Cre/LoxP system was later used for spatiotemporal control of other oncogene
expression in melanoma development [120].

Interestingly, the induction of cutaneous melanoma with ultraviolet radiation was not very
successful in non-transgenic mice. Therefore, several transgenic mice lines were established that are
susceptible to melanoma induction by UV [123–125].

Each mouse model system possesses unique advantages and disadvantages [115,116,119].
Moreover, the interpretation of results from mice melanoma models should take into account the
different location on melanocytes in skin, which is dermal in mice in contrast to epidermal in
human [125,126]. Such a different microenvironment may influence melanoma growth and spreading.

3.2.2. Dog Models

Spontaneously developed pigmented lesions are common in dogs and share some features with
human pigmented lesions. In purebred dogs (especially Standard and Miniature Schnauzers, Doberman
Pinschers, Scottish Terriers, Irish and Gordon Setters, and Golden Retrievers), the prevalence of this
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disease is higher, which indicates its genetic basis [127]. Canine dermal melanoma is largely a benign
tumor; however, uveal, oral, and mucocutaneous melanomas are aggressive forms frequently metastatic
into regional lymph nodes and lungs. They are poorly responsive to conventional therapy [128].
The oral cavity is the most frequent location of canine melanomas (approximately 60% of cases) and
such tumors mimic human mucosal melanomas [129]. Results from a study of tumor suppressors in
melanoma samples and melanoma cell lines derived from dog tumors indicate that loss of function
of certain proteins is a common occurrence that may contribute to the origin of canine melanomas.
The most frequent abnormality was significant reduction or loss of p16 protein expression. In the case
of p53 tumor suppressor, the exclusion of protein from the nuclear compartment was seen in almost all
of the studied samples [130]. Transcriptomic analysis of canine oral melanoma revealed mutations in
NRAS and PTEN genes, but not in BRAF [131], as well as upregulation of matrix metalloproteinase 2
(MMP2) and downregulation of MMP7 [132]. Activation of the PI3K/protein kinase B(Akt) pathway
was detected in malignant melanomas on distant extremities [133]. In a genomic study of 27 canine
malignant melanoma tumors, mutations in genes including BAP1, KIT, KRAS, NRAS, PTEN, and TP53
were found, while no mutation in TERT promoter, BRAF, CDK4, MITF, or NF1 genes was detected.
In approximately 20% tumors, mutations in PTPRJ (protein tyrosine phosphatase, receptor type J),
a putative tumor suppressor gene not previously shown to have frequent inactivating point mutations
in cancer, was observed [134]. Dog melanomas and their epidemiological, clinical, histological, and
genetic comparison to human ones were the subject of a recent excellent review by Prouteau and
André, where additional information can be found [129].

3.2.3. Equine Models

Spontaneous occurrence of dermal melanomas was seen in horses with a gray coat color [135].
In Camargue-type gray-skinned horses, multiple melanomas were observed. Most horses had tumor(s)
underneath the tail, and less often in the perianal region, on lips, in the eyelids, and in genitals.
The skin tumors were rarely seen in other body regions. In some of the strongly affected animals, the
metastases developed; however, clinical examination and other observations suggest that melanomas
in these horses are clinically different to those in human patients [136]. In graying white horses from
the Old Kladruber strain, melanomas usually naturally occur at the age of 5–6 years, and statistically
significant differences between the sire lines indicate a possible influence of heritable factors [137].
The 4.6-kb duplication in the intron of the syntaxin 17 (STX17) gene was found to cause the graying in
horses and is associated with a high incidence of melanoma and vitiligo-like skin depigmentation [138].
Transcription factor MITF is appropriate for the identification of melanocytic cells in horse melanoma.
Moreover, the receptor for activated C kinase 1 (RACK1) protein was found as a useful marker to
discriminate melanoma cells from healthy skin and melanocytic lesions [139].

4. Swine Melanoma Models

Spontaneous occurrence of melanoma in pigs is generally very low. Skin tumors were occasionally
observed in pigmented meat breeds such as Duroc, Bazna, and Iberian pig. Metastases into lymph
nodes and visceral organs were found in the affected Duroc pigs [140–143]. An extensive study of
747,014 swine carcasses (without information about breed) revealed 220 cases (i.e., 0.03% only) with
cutaneous and lymph node lesions suggestive of melanoma. Histological analysis of samples taken
from 176 cutaneous lesions revealed that almost all of them (with the exception of two non-regressing
melanomas) were spontaneously regressing [144]. Monitoring offspring from the crossing of Duroc
pigs suggested the inherited characteristics of melanocytic tumors [145]. Using selective breeding,
three miniature pig models with hereditary melanoma were established: the Sinclair miniature swine,
the Munich miniature swine Troll, and the melanoma-bearing Libechov minipig (MeLiM). Melanomas
in these three models show similarities such as early postnatal development, histopathology, and
spontaneous regression connected with depigmentation.
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4.1. Sinclair Miniature Swine

The Sinclair miniature swine was derived from the Hormel miniature pig (also known as the
Minnesota miniature pig) that was developed as a small pig model at the Hormel Institute (University
of Minnesota, Austin, USA). A portion of the original Sinclair herd was moved to the University of
Missouri (Columbia, USA) in 1965 and then to the Sinclair Comparative Medicine Research Farm
(Columbia, USA). The first Sinclair swine with cutaneous melanoma observed in this strain appeared
in 1967 [146]. The incidence of melanoma changed during development of this pig model. The initial
incidence of pigmented cutaneous lesions was 21% [146]. In subsequent generations, the incidence was
highly influenced by selective breeding, reaching the highest level around 60% in newborn offspring
of both affected parents [147,148]. Black pigs showed multiple primary skin lesions of variable size
and appearance (exophytic, flat, ulcerated, locally necrotic) that were often present already at birth
(congenital) or developed postnatally. On the contrary, no tumors were found in piglets with the red
coat color.

Cutaneous pigmented lesions in the Sinclair miniature swine have a variety of histopathologic
forms showing many similarities to human lesions. They were classified as benign nevi, superficial
spreading melanoma, or nodular melanoma metastatic to lymph nodes and visceral organs (mainly
lungs and liver). Skin tumors spontaneously regressed during postnatal life, and this was often
accompanied by a local or generalized depigmentation of skin and bristles. Complete regression of
melanoma including metastatic regional lymph nodes was also observed [147,149–152]. The proportion
of animals with melanoma regression ranged between 85% and 100%. Detailed histological evaluation
of the regressing melanomas revealed a biphasic immunological process. The first phase took place
mainly during the second month after birth and was characterized by massive macrophage infiltration.
This initial phase displayed tumor mass with less variation and was followed by regrowth of the
residual melanoma tissue. The second phase (starting around the beginning of the fourth month of age)
showed lymphocyte infiltration and complete elimination of melanomas [153]. Immunophenotyping
of tumor-infiltrating lymphocytes in the second regression phase revealed significantly more cytotoxic
(CD4−/CD8+) T-lymphocytes compared to peripheral blood, whereas percentages of the T-helper
(CD4+/CD8−) lymphocytes and double-positive (DP) CD4+/CD8+ T-lymphocytes were reduced.
The percentage of B-lymphocytes (CD1+) was very low [154]. These results demonstrate that the
cytotoxic T-lymphocytes play the main role in the final elimination of melanoma cells during the
second regression phase. However, role of specific antibodies in the spontaneous regression cannot
be excluded, as antibodies against melanoma antigens were found in sera collected from the Sinclair
miniature swine with spontaneously regressing melanoma. Their levels increased with the age
of the pigs, usually preceding or appearing together with tumor regression and depigmentation.
This suggests an antibody-mediated immune response directed against common antigens presented
by both malignant and normal swine pigmented cells [155]. Findings in melanoma cells derived from
spontaneously regressing Sinclair melanomas suggested that spontaneous regression is associated with
higher sensitivity of the melanoma cells to apoptosis [156], the loss of telomerase activity, reduction of
telomeric repeats, extensive DNA fragmentation, and formation of apoptotic bodies [157]. Since 1994,
the Sinclair miniature swine is produced for research purposes by Sinclair Bio-Resources (Auxvasse,
Missouri, USA) as a spontaneously regressing pig melanoma model.

Inheritance of melanoma in the Sinclair miniature swine was intensively studied. However, exact
genetic determinants responsible for its development remain to be discovered. A two-locus model
was suggested for expression of the exophytic form of melanoma on the basis of complex segregation
analysis. One locus lies within the swine major histocompatibility (SLA) complex. The other, yet
unidentified, putative dominant tumor-initiator locus segregates independently of the SLA complex.
The melanoma-producing allele at this locus is inherited in the heterozygous state and requires a
somatic mutation of the normal allele to initiate melanoma development. SLA haplotype B was
associated with the expression of Sinclair melanoma. A single dose of the B haplotype is required for
full penetrance of the dominant allele at the tumor-initiator locus [158–160]. Cytogenetic analyses of
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three melanoma cell lines from the Sinclair miniature swine revealed specific common chromosomal
abnormalities. Structural alteration in chromosomes 2, 3, 6, 7, and 12 were found that probably
represent the initial step of melanoma development. In addition, monosomies of chromosomes 2, 4, 7,
10, and 17 and three marker chromosomes (labeled M1, M2, and M3) resulting from chromosomal
translocations were detected [161].

4.2. Munich Miniature Swine Troll

The Munich miniature swine Troll is historically the second swine model with hereditary melanoma.
Literature data about this model and its experimental utilization are very limited. It was established
at the University of Munich, Germany, in 1986. One melanoma-bearing boar and two unaffected
sows were founders of this herd. They were derived from the herd originally developed from the
Hanford and the Columbian miniature swine at the Medical Service Munich. Selective breeding of
melanoma-affected animals increased the incidence of malignant tumors to 70%. Benign melanocytic
lesions were also observed in addition to melanomas in darkly pigmented (black and red) animals.
Skin lesions were already present at birth or they mostly developed within the first two months of life.
Complete spontaneous regression of melanomas accompanied by hair and skin depigmentation was
also observed in the Munich miniature swine Troll; however, the frequency of regressing pigs was not
given. Breeding of Munich miniature swine Troll (manifesting cutaneous melanomas) with the German
Landrace (white color, without any skin lesions) and analyses of F1-, F2-, and B1-generations showed
that the dominant allele I at the I-locus (responsible for white phenotype) suppressed melanoma lesions.
This is explained by a mutation of the KIT gene, leading to a failure of melanoblast migration and
subsequent lack of melanocytes in the skin of white pigs. The segregation data for skin melanomas in
this breed are best explained by a three-locus model with two recessive alleles per locus. An influence
of SLA haplotypes on the penetrance of melanocytic lesions was not observed in the Munich miniature
swine Troll [162,163]. An in vitro study with melanoma cells of Munich miniature swine Troll suggested
a low importance (if any) of blood natural killer (NK) cells for spontaneous regression of melanoma
in this animal model [164]. Elevated expression of porcine endogenous retroviruses was detected in
melanomas and cell cultures derived from pulmonary metastasis in this swine melanoma model [165].
A similar observation of human endogenous retrovirus K was also reported for human melanomas [166].
Endogenous retroviruses can support cancer formation by inducing chromosomal translocations in
somatic cells and promoting immunosuppressor pathways [167]. The publication of Dieckhoff et al. in
2007 [165] is the latest that can be found through PubMed about melanoma research on the Munich
miniature swine Troll. Thus, it is not clear if this animal melanoma model still exists.

5. The Melanoma-Bearing Libechov Minipig

5.1. Development of the MeLiM Model

Pigs were kept in the Institute of Animal Physiology and Genetics (IAPG) of the Czech Academy
of Sciences in Libechov originally for the study of blood groups since 1966. Firstly, two boars and
two sows of the Goettingen miniature swine from the University of Goettingen (Institute of Animal
Breeding and Genetics, Germany) were imported in December 1966 and another two sows of the
same strain in August 1967. The Minnesota miniature pigs from the Hormel Foundation (Austin,
USA) and Vietnamese pigs from German zoos were used as foundation stock for development of
the Goettingen miniature swine [168]. Then, two imports of the Minnesota miniature pigs (Hormel
Foundation, Austin, USA) followed, consisting of two boars and three sows in September 1967 and
two boars in February 1969. To maximize genetic variability for the analysis of a wide range of
pig blood groups, animals of these two strains of miniature pigs were crossed with pigs of several
commercial meat breeds (Canadian Landrace, Cornwall, and Large White) and with Vietnamese
pigs. The first few black piglets with cutaneous melanomas were observed in this genetically highly
heterogeneous pig population in 1989. They came from mating of two boars (brothers) with four related
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sows, all without any cutaneous lesions. Selective breeding of melanoma-bearing animals for several
generations confirmed genetic predisposition to melanoma with its incidence around 50%. This new
pig melanoma model was designated by the acronym MeLiM (melanoma-bearing Libechov minipig;
originally melanoblastoma-bearing Libechov minipig) [169,170]. Long-term monitoring of the MeLiM
strain showed that values of melanoma incidence varied during individual years depending on tumor
burden of parents. For this reason, more affected parental pigs were included in the breeding program,
thus increasing melanoma incidence in the MeLiM roughly to 80% in 2018. Tumor devitalization
(ischemization) was successfully applied in very affected pigs (see Section 5.8) to increase survival
and allow their use in breeding. Currently, eight sows and four boars of the MeLiM line are bred to
produce piglets used in experiments.

Extensive cooperation was established between IAPG (Laboratory of Tumor Biology (LTB)) and
other research institutions in the Czech Republic (Czech University of Life Sciences Prague; First Faculty
of Medicine of the Charles University Prague; Institute of Microbiology and Institute of Molecular
Genetics of the Czech Academy of Sciences, Prague; University of Veterinary and Pharmaceutical
Sciences, Brno) for characterization of the MeLiM model. The study of melanoma inheritance in the
MeLiM strain was carried out in international cooperation with the INRA/CEA (Institute National de
la Recherche Agronomic/Commissariat à l’Energie Atomique, Laboratoire de Radiobiologieet Etude
du Génome (LREG), Jouy en Josas, France). Repeated exports of MeLiM animals (melanoma-bearing
and melanoma-free) of both sexes and various ages were made from LTB to LREG. They included
two boars (age one year) with two pregnant sows (age three years) in June 1997, four boars with six
sows (all five months old) in October 1998, six sows (age 6–12 months) in November 2002, and three
boars with four sows (age 14–18 months) in June 2008. To reveal genes responsible for melanoma
susceptibility in the MeLiM strain, the transported animals were crossed with healthy Duroc pigs in
LREG. It is not clear whether the offspring of transported pigs at LREG are currently maintained as a
pure MeLiM strain or only as MeLiM × Duroc hybrids. Thus, results obtained in the original MeLiM
strain kept in IAPG Libechov and in the MeLiM strain derived from the pigs transported into INRA
(Jouy en Josas) may differ.

5.2. Histopathological, Biochemical, and Immunohistochemical Characterization

Variability in color coat is observed in the MeLiM animals that reflects the multi-hybrid
characteristics of this strain. Pigs are usually black (Figure 2a); however, rusty-red, brown, or white
(with black spots) individuals are also rarely found (Figure 2b). Small white spots can infrequently
appear in colored animals. Black pigs are the most affected by melanoma. Cutaneous tumors are
usually multiple, of deep-black pigmentation, nodular type (with local necrosis in larger tumors), and
they are distributed on all body parts (Figure 2c). Rusty-red and brown animals show only one or a few
cutaneous melanomas, and white pigs with black spots are without skin lesions. Nevi and superficial
spreading melanomas also appear in affected pigs.

Similarly as in the Sinclair miniature swine, skin lesions are found already at birth or they develop
shortly thereafter during the first two months of postnatal life. They grow exophytically, reaching sizes
of about 15–70 mm, exceptionally up to 150 mm (Figure 2d). Histological observation of cutaneous
nodular melanomas revealed variable concentration of brown–black melanoma cells. In the dermis,
they formed areas with compact aggregation or were dispersed showing vertical spreading from the
basal layer of epidermis into a deeper layer of the dermis (stratum papillare and stratum reticulare)
and invading the hypodermis. Thus, these tumors correspond to Clark’s level V of human melanoma.
The epidermis was considerably reduced or totally destroyed [169,171]. The malignant characteristic of
melanoma in the MeLiM strain is confirmed by presence of numerous metastases. They are commonly
found in the lymph nodes (Figure 2e), lungs, and spleen (Figure 2f). Heavily affected animals also
demonstrate metastases in other visceral organs such as the stomach, liver, small and large intestine,
pancreas, kidneys, heart, and thymus [169,172–174].
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Figure 2. Melanoma-bearing Libechov minipig (MeLiM) swine model of hereditary melanoma: (a) 
black boar of the MeLiM strain after spontaneous regression of melanoma (without any changes in 
pigmentation) (age three years); (b) originally black sow of the MeLiM strain (age four years) after 
spontaneous regression of melanoma (with almost total depigmentation), together with piglets of 
different coat color (age three weeks); (c) MeLiM piglet with multiple cutaneous nodular melanomas 
(age six weeks); (d) MeLiM piglet showing several large nodular melanomas with local necrosis and 
beginning cachexia (age seven weeks). Note the vastly increased cervical lymph node (arrow) due to 
melanoma metastasis; (e) very enlarged inguinal lymph node totally infiltrated by metastatic 
melanoma cells (taken from MeLiM piglet with melanoma progression, age six weeks), scale in cm; 
(f) autopsy of MeLiM piglet that died from melanoma progression (age four weeks). Numerous 
melanoma metastases (seen as black spots) in visceral organs (lungs, liver, stomach, and spleen) 
clearly document the malignant characteristic of melanoma in the MeLiM model.  

Figure 2. Melanoma-bearing Libechov minipig (MeLiM) swine model of hereditary melanoma:
(a) black boar of the MeLiM strain after spontaneous regression of melanoma (without any changes in
pigmentation) (age three years); (b) originally black sow of the MeLiM strain (age four years) after
spontaneous regression of melanoma (with almost total depigmentation), together with piglets of
different coat color (age three weeks); (c) MeLiM piglet with multiple cutaneous nodular melanomas
(age six weeks); (d) MeLiM piglet showing several large nodular melanomas with local necrosis and
beginning cachexia (age seven weeks). Note the vastly increased cervical lymph node (arrow) due to
melanoma metastasis; (e) very enlarged inguinal lymph node totally infiltrated by metastatic melanoma
cells (taken from MeLiM piglet with melanoma progression, age six weeks), scale in cm; (f) autopsy
of MeLiM piglet that died from melanoma progression (age four weeks). Numerous melanoma
metastases (seen as black spots) in visceral organs (lungs, liver, stomach, and spleen) clearly document
the malignant characteristic of melanoma in the MeLiM model.

The presence of tyrosinase messenger RNA (mRNA) in the blood is assumed to indicate melanoma
metastases [175]. While tyrosinase mRNA was detected by RT-PCR in the blood of MeLiM animals
with advanced disease [176], how much this represents the presence of migrating cells contributing to
metastasis formation is still unclear. In addition to RT-PCR for the detection of selected pigmented-cell
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specific mRNAs, novel and more specific techniques are currently being developed for the detection of
circulating melanoma cells, applicable for human disease staging, diagnosis, and prognosis [177,178].

Basic biochemical and ultrastructural characterization of the MeLiM melanoma was performed by
Borovanský et al. [179]. A very high concentration of melanosomes with a high proportion of melanin
(almost 40% of the organelle dry weight) corresponds to deep-black pigmentation of the tumor. Aberrant
forms of melanosomes were found by electron microscopy similarly as in the Sinclair miniature swine [180]
and human nodular melanoma [181]. Three main melanosome enzymes involved in melanogenesis,
biochemical melanoma differentiation, and metastatic activity, i.e., tyrosinase, α-mannosidase, and
γ-glutamyltransferase [182–184], were detected in the MeLiM melanoma tissue [179].

Immunohistochemical analyses showed further similarities of the MeLiM melanoma with
the human one. High expression of RACK1 was observed in the cytoplasm of cutaneous and
metastatic pig melanoma cells. These tumor cells showed also nuclear staining for MITF, a specific
marker of the melanocytic lineage. Because of similar findings in human cutaneous melanomas and
melanoma metastases, RACK1 expression could serve as a potential marker of malignancy of human
melanoma [185]. Expression of the S100 protein, used for human melanoma diagnosis [186], was also
found in cryosections of progressing MeLiM melanomas and cells derived from them in vitro (V. Horak,
unpublished observation). Four extracellular matrix proteins, collagen IV, laminin [187], tenascin C,
and fibronectin [188,189], as well as matrix metalloproteinase 2 (the enzyme degrading the extracellular
matrix) [189], were immunohistochemically found in extracellular spaces of cutaneous melanomas,
suggesting their production by the MeLiM melanoma cells. All these proteins can support tumor
cell proliferation, migration, and metastases [190–193]. More than a three-fold increase of tenascin C
mRNA in MeLiM melanoma tissue compared to contralateral normal skin was observed, accompanied
by elevated protein level [188]. Tenascin C is highly upregulated during wound healing, accompanied
by rapid angiogenesis, fibroblast migration to the damaged area, and re-epithelialization by migrating
keratinocytes. Elevated tenascin C level is also frequently found in human melanomas, where this
protein supports malignant melanocyte survival, invasion, and metastasis [194].

A new computer-supported method for spatial mapping of various metals in tissue sections
was developed recently using MeLiM melanomas as a suitable cancer model [195]. The method is
based on image registration of digital data obtained from scans of two neighboring cryosections, of
which the first one is processed by standard histological staining and the second one is analyzed
for metallic content by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).
Detailed histological analysis of cutaneous melanomas sampled from MeLiM pigs aged 4–22 weeks
revealed four structurally different tissue zones—growing melanoma tissue (GMT), early spontaneous
regression (ESR), late spontaneous regression (LSR), and fibrous tissue (FT)—whose presence, size,
and proportion in melanoma tissue changed with animal age and advancing melanoma regression.
This pilot study showed the highest concentrations of zinc and cooper in growing melanoma tissue,
whereas the lowest ones were found in fibrous tissue. Both these metals are important players in
various cancer diseases. Zinc level is increased in the majority of human melanomas but copper level
is elevated only in some of them [196]. Application of matrix-assisted laser desorption/ionization mass
spectrometry imaging (MALDI MSI) revealed four ion peaks, m/z 3044, 6011, 6140, and 10180, which
were overexpressed in MeLiM melanoma tissue in comparison to healthy skin. Moreover, the ion
peaks at m/z 6011 and 6140 were overexpressed in the GMT region. These findings agree with the
high zinc content observed in this region in a previous study, leading to the assumption that both
peaks represent metallothioneins [197]. Elevated metallothionein content in the MeLiM melanoma
was already detected previously by the adsorptive transfer stripping differential pulse voltammetry
Brdicka reaction [198]. Overexpression of metallothioneins was associated with a poor prognosis in
human cutaneous melanoma [199]. These recent studies of MeLiM melanoma show the usefulness of
this swine model for basic melanoma research and suggest possibilities for its further use in the search
for markers of melanoma progression and spontaneous regression that could serve in clinical practice.
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5.3. MeLiM Melanoma Progression and Spontaneous Regression

In the MeLiM model, multiple cutaneous melanomas found on various parts of body develop
differently over time for each individual. Two main situations may occur—cancer progression and/or
spontaneous regression [200]. Small cutaneous tumors (found at birth or developed shortly thereafter)
initially grow in all affected piglets.

In a smaller part of affected piglets (about 5–30% depending on disease burden in parents), cancer
progression continues. Melanoma progression mainly affects black piglets, while it is very rare in
rusty-red and brown ones. Cutaneous melanomas grow further reaching a large size (Figure 3a), with
occasional bleeding and local necrosis. These heavily affected piglets initially lag in bodyweight gains
behind their less affected (spontaneous regression showing) siblings (Figure 3b). At the later stage,
they lose weight and develop strong cachexia with melanoma progression. Extensive metastases are
observed in the lungs, lymph nodes, and spleen. Metastases in lymph nodes, mainly in cervical and
inguinal areas, are also macroscopically visible in some animals due to their increasing size (Figure 2d,
arrow). Additionally, metastases are present in the liver, various parts of the gastrointestinal system
(Figure 2f), thymus, heart, and brain [169,173]. The animals with progressive melanoma usually die
during the first three months of age. The main cause of death seems to be breathing difficulties and
insufficient oxygen supply of the whole organism due to severe damage of lung tissue with a vast
number of melanoma metastases.
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Figure 3. Progression and spontaneous regression in MeLiM model: (a) three growing cutaneous
nodular melanomas (with local necrosis) are well visible after shaving off the bristles (age 11 weeks);
(b) comparison of two MeLiM siblings, one with melanoma progression causing heavy cachexia and
body size reduction (left side) and one with spontaneous regression and normal body size (right side)
(age 10 weeks); (c) flattening and graying of originally nodular melanoma (arrowhead) and halo around
one smaller melanoma (arrow), together with partial depigmentation of skin and bristles observed in
MeLiM pig with ongoing spontaneous regression of melanoma (age four months); (d) partial bristle and
skin depigmentation versus preserved black pigmentation in two MeLiM siblings with spontaneous
regression of melanoma (age 5.5 months); scales in cm.
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Spontaneous regression of melanoma is observed in the majority of MeLiM piglets. After the
initial period of growth, tumors begin to flatten, reduce in size, and change color from black to gray.
Piglet body weight reaches normal or almost normal values. Melanoma regression is usually associated
with skin and bristle depigmentation (Figure 3c, white arrowhead). It starts as sparsely dispersed white
bristles over the body or localized discoloration around several cutaneous tumors. A halo effect around
some melanomas is also observed (Figure 3c, black arrow). Then, depigmentation gradually extends
to the surrounding parts of the body. This depigmentation spreads sometimes to almost the entire
body leading to the originally black pig becoming nearly white (Figure 2b) [169,171]. A specific CD4
haplotype was observed in T-lymphocytes to be related to the depigmentation during regression [201].
However, the black pigmentation is rarely maintained in MeLiM pigs with spontaneous regression
(Figure 3d). Skin depigmentation was also observed in melanoma patients with spontaneous regression
and/or treated by immunotherapy [72]. These color changes of the skin suggest the activation of
immune cells against an antigen that is common to melanoma cells and normal melanocytes.

The spontaneous regression is a very dynamic process in which melanoma cells are gradually
destroyed and tumor tissue is replaced with the fibrous tissue. Vincent-Naulleau et al. monitored
spontaneous regression of melanoma in a colony of MeLiM pigs that was derived from the MeLiM
animals transported from the Czech Republic to France and in their Duroc crossbreeds. They observed
that the time course of spontaneous regression was dependent on tumor growth. In fast-growing
tumors, spontaneous regression appeared between the third and fourth month, whereas slow-growing
tumors demonstrated it between the fifth and seventh month. Moreover, two regression phases were
observed in some exophytic tumors that were present at birth. The early regression (between the
second and the third month) was followed by a transitional period of relapse and tumor growth
(between the 2.5th and 4.5th month) and finally with the latest regression phase (between the 3.5th
and sixth month) [171]. Our time-lapse immunohistochemical study of exophytic melanomas taken
from pigs of the original MeLiM strain (from three weeks to eight months of age) showed only one
regression phase. Expressions of fibronectin, tenascin C, collagen IV, laminin, and MMP2 increased up
to the 10th week of age. In older animals, gradual destruction of melanoma cells and rebuilding of
melanoma tissue into the fibrous tissue was observed. In agreement with this process, the expression
of collagen IV, laminin, and MMP2 declined, whereas the expression of fibronectin and tenascin C
raised in the arising fibrous tissue. The age of 10 weeks seems be a turning point in the transition
between the initial melanoma growth phase and subsequent spontaneous regression phase [187,189].

Spontaneous regression does not occur synchronously in all melanoma sites on the body.
Its duration depends on the number and size of melanoma deposits. The whole process of spontaneous
regression is usually completed around 6–12 months of age.

5.4. Genetic Findings

The development of melanoma in pigs is a polygenic process [202]. The CDKN2A locus causative in
human familial melanoma was studied in MeLiM pigs; however, haplotype analysis, allelic association,
and linkage analysis led to exclusion of this gene from candidates for melanoma susceptibility [203].
Later experiments revealed that MeLiM melanoma is inherited as an autosomal dominant trait with
incomplete penetrance. The inheritance of melanoma was seen preferably in black animals. Association
of regions harboring CDK4 and BRAF genes was not found; however, another three candidate regions
which correspond to human regions with melanoma candidate loci were observed [204]. For the black
coat color, a variant allele of the MC1R gene was found (marked as MC1R*2) to be associated with
melanoma development. This is in agreement with the fact that human variant alleles of MC1R may
increase melanoma risk independently of UV exposure [202]. Comparative expression analysis revealed
that the RACK1 gene is overexpressed in melanoma metastases compared to normal melanocytes.
This finding is consistent with results observed in human melanoma patients [185]. Functional studies
highlighted that the MITF gene has potential involvement in porcine melanoma biology; however,
direct association of this gene with melanoma development was not confirmed [205]. A 450-kb
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duplication in the KIT gene was found to be responsible for white or belt coat color in pig, as it
prevents migration of embryonic melanoblasts to skin. Diverse KIT mutations were found in various
human cancers, including melanoma, and one variant showed a significant association with cutaneous
invasion, melanoma development, and tumor ulceration in the MeLiM strain [206].

Genome-wide time-dependent profiling was conducted to analyze molecular mechanisms involved
in MeLiM spontaneous melanoma regression. Among other results, downregulation of genes involved
in cell cycle and DNA replication, recombination, and repair was observed in tumors at the 28th, 49th,
and 70th day of age in a piglet with spontaneous regression, suggesting the reduced proliferative capacity
of melanoma cells. Moreover, upregulation of monocyte/macrophage-related genes at the same time
points was accompanied by tumor-infiltrating macrophage infiltration observed in tumor histological
sections. At three months of age, upregulation of different T-cell receptor (TCR) chains, as well as
T-cell-associated cytokines, together with dramatic downregulation of genes involved in melanogenesis,
confirms T-cell activation and loss of melanoma cells at the later phases of regression [207]. In addition,
suppression subtractive hybridization was used to study gene expression in progressive and regressive
MeLiM melanoma tissue. Verification by RT-PCR and immunohistochemistry confirmed upregulation
of CD9 and retinoic acid responder 1 gene (RARRES1) in regressive tumors, while MITF was upregulated
in progressive melanomas [208].

A genome-wide association study performed on 190 animals of the MeLiM × Duroc pedigree
revealed several loci on chromosomes 2, 5, 7, 8, and 16, showing significant associations with melanoma
occurrence and progression (i.e., clinical ulceration and presence of metastasis). The most significant
region associated with melanoma occurrence was located on chromosome 5 harboring the NUAK1 gene
encoding AMP-activated protein kinase (AMPK)-related protein kinase 5 (ARK5) [209]. ARK5 is known
to promote survival and invasion of cancer cells and is probably activated by the Akt kinase [210].
GWAS analysis of tumor ulceration revealed a region on chromosome 16 nearby the IRX4 gene
(iroquois homeobox gene) [209], previously identified as a risk factor in human prostate cancer [211].
Interestingly, IRX4 is located only 600 kb from the TERT gene. Mutations in TERT promoter are
associated with both familial and sporadic melanoma [40]. Genes associated with metastasis in MeLiM
were identified on chromosomes 2 (coding long non-coding RNAs (lncRNAs) with functions in tumor
suppression and metastasis formation) and on chromosome 8, harboring the HERC3 (probable E3
ubiquitin–protein ligase) gene [209]. HERC3 is an endosomal protein with probable ubiquitin–protein
ligase function. HERC3 mutations were observed in gastric and colorectal cancers [212]. In MeLiM
melanoma, an additional 12 loci, previously reported to associate with melanoma in human, were
identified. Several novel gene candidates associated with MeLiM melanoma, not yet reported in
human, were also revealed [209].

MicroRNAs (miRNAs) are in the center of current research because they play important roles in all
processes in the cell, and they also participate in melanoma development [213]. Analysis of miRNA in
MeLiM tumors revealed significant upregulation of let-7b, miR-193b, miR-21, miR-221, and miR-222 in
regressive tumors in contrast to miR-92a, which was upregulated in progressive tumors. The expression
of miR-92a, let-7b, and miR-193b in regressive MeLiM tumors was in contrast to previous findings in
progressive human tumors, suggesting that such miRNAs could be potential actors in the regression
process in MeLiM cutaneous melanoma. MiR-193b could regulate cell-cycle-related genes during
regression of cutaneous melanoma [214].

5.5. Hematological Findings

Hematological monitoring is an integral part of the diagnosis of cancer and of the subsequent
treatment. Values of various hematological parameters, such as leukocyte and neutrophil counts
and their ratios (neutrophil–lymphocyte and platelet–lymphocyte ratios), can be used as prognostic
markers in different types of cancer [215–218] including melanoma [219,220]. Elevated leukocyte count
with neutrophilia was found in metastatic melanoma patients [221]. A baseline neutrophil–lymphocyte
ratio lower than five was associated with improved survival of metastatic melanoma patients treated
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with ipilimumab [222]. Another study of patients with early-stage (I–III) melanoma showed worse
survival with a baseline neutrophil–lymphocyte ratio lower than 2.5 [223]. Thrombocytosis [224]
and low concentration of blood hemoglobin [225] predicted metastatic disease and worse survival
in melanoma patients. Anemia is commonly found in cancer patients indicating a poor prognosis.
It is a multifactorial process that is often connected with iron deficiency as a major causal factor [226],
manifesting as decreased erythrocyte count and lower hematocrit. The level of blood iron and iron
homeostasis is important for both innate and adaptive immunity response [227,228]. One of the many
important functions of iron is the regulation of immune cell distribution [229].

Hematological analyses are also important for monitoring animal cancer models, as shown
in our recent study [200]. Basic hematological parameters of MeLiM animals with melanoma
progression or spontaneous regression were compared to healthy (white, melanoma-free) animals
from 5–18 weeks of age. Iron deficiency and microcytic hypochromic anemia were observed in
all MeLiM pigs. The group of pigs with melanoma progression was characterized by the lowest
values of red blood cell count, hematocrit, and concentration of hemoglobin, as well as by the
highest number of platelets. Moreover, a very high number of neutrophils was found (measuring
differential white blood cell counts), driving the high number of white blood cells observed in these
animals. In the spontaneous regression group, higher values of red blood cell count, hematocrit,
and concentration of hemoglobin, together with a lower number of platelets, were ascertained.
Thus, monitoring hematological parameters enables distinguishing (together with macroscopic,
histologic, immunological, and immunohistochemical observations) MeLiM piglets with progression
and spontaneous regression in early postnatal development. These findings extend the characterization
of the MeLiM model and show its further similarities with melanoma patients.

5.6. Immunological Findings

Immune cells infiltrating tumors, including melanoma, are responsible for anti-tumor
immunological surveillance. However, some tumor-associated immune cell types (such as macrophages
and neutrophils) can also support cancer progression depending on tumor milieu [230,231]. A higher
infiltration of cutaneous melanomas with lymphocytes is associated with better prognosis and longer
survival of melanoma patients. The cytotoxic CD8+ T-lymphocytes collaborating with the CD4+

T-helper cells were found to be the most important components [232,233]. Promising results of
treatment of metastatic melanoma patients with adoptive transfer of tumor-infiltrating lymphocytes
(TILs) confirmed their anti-cancer effectiveness [234].

The MeLiM animals with melanoma spontaneous regression represent a promising immunological
model for monitoring immune cells participating in anti-melanoma reaction. Flow cytometry revealed
two DP T-lymphocyte subpopulations, i.e., melanoma-associated CD4+/CD8high T-lymphocytes
in peripheral blood and CD4+/CD8high TILs in melanoma tissue (together with CD4−/CD8+

T-lymphocytes), which expanded during melanoma regression. They showed a similar expression
of selected CD markers between different pigs and different melanoma loci among the same pig,
suggesting that they are effector/memory αβ T-cells considerably involved in spontaneous regression
of MeLiM melanoma [235]. It is important to mention, that CD4+/CD8+ cells are more frequent in
pigs, reaching up to 60% of total T-cell counts in adult pig blood, in contrast to 3% in human [236].
The number of DP T-cells naturally increases during the life of pigs [237], which may mask the increase
caused by MeLiM regression. Nonetheless, MeLiM peripheral DP cells differ in the intensity of
CD8 expression, with CD8high expression in the melanoma-bearing animals in later stages of tumor
regression compared to CD8low positivity in their melanoma-free littermates (both groups at the
age of eight months). Importantly, a unique DP cell subpopulation was identified in the blood of
regressive MeLiM animals, representing one T-cell clone carrying a mono-specific TCRβ receptor,
which is supposed to be responsible for melanoma regression [235]. Our unpublished data about
cytokine production of DP T-cells suggest that these cells represent a non-naïve (activated, recirculating)
lymphocyte subpopulation with immunomodulatory activity. Compared to single-positive T-cell



Genes 2019, 10, 915 19 of 34

populations, where 30% and 50% of CD4 single-positive and cytotoxic T-cells produced IFNγ and/or
tumor necrosis factor α (TNFα), respectively, almost 60% of DP T-cells were cytokine producers.

Although the significance of CD4+/CD8+ DP T-cells in cancer conditions remains unclear, they are
mentioned to play an important role at peripheral sites. Their functions are probably the consequence
of various microenvironments found across different types of tumors. Anti-tumor actions of DP cells
were described in various tumor types [236]. Bagot et al. isolated a clone of DP cells with a CD4+/CD8+

dim phenotype from the cutaneous infiltrate of a patient with T-cell lymphoma. These cells were major
histocompatibility complex class I (MHC I) restricted and cytolytic against autologous tumor cells
in vitro [238]. Concerning clinical outcomes, De Marchi et al. described the presence of CD4+/CD8+

T-cells in cutaneous lesions in mycosis fungoides. Their presence was associated with a slightly slower
progression of the disease [239]. A significant increase of DP cells was also noted in human malignant
melanomas and their metastases. Increased numbers of DP cells were observed in about 60% of
melanomas compared to peripheral blood. A high proportion of these cells were TNF-α-producing in
response to autologous melanoma cells. They were also characterized by higher secretion of IL-13,
IL-4, and IL-5 compared to single-positive cells [240].

5.7. Skin Microbiome

Microbiome is a term for the community of microorganisms (bacteria, archaea, fungi, protozoa,
viruses) living at a given environment, e.g., on the epithelial surfaces of the mammalian body.
The local microbiome affects functions of the epithelial barrier and regulates immunity [241]. In cancer,
microorganisms may directly contribute to cancer development (e.g., in gastric, colorectal, cervical, and
hepatocellular cancer or lymphoma) and may modify patients’ immunity and response to therapy [242].
The gut microbiome is increasingly recognized as a modulator of response to anti-cancer treatment,
particularly to immune checkpoint inhibitors [242–244]. The skin microbiome is much less explored.
In human, the skin microbiome was analyzed in a search for a diagnostic tool for melanoma and
melanocytic nevi. However, no significant differences between melanoma and nevi microbiomes were
found [245].

In MeLiM piglets, the possible involvement of skin microbiome in melanoma development
was studied. Melanoma surface and healthy skin (5 cm from the melanoma lesion) were compared
by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS)
of cultured microorganisms [246], as well as 16S ribosomal RNA (rRNA) analysis [247]. Using
MALDI-TOF, a clear significant difference between the proportions of bacteria on healthy skin and
melanoma was observed, with Staphylococcus sciuri, Lactococcus lactis, and Staphylococcus cohnii being
typical for healthy skin, while Staphylococcus chromogenes, Staphylococcus hyicus, and Enterococcus
faecalis were abundant on the melanoma surface [246]. To monitor the possible involvement of skin
microorganisms in melanoma development, skin and melanoma scrapes were analyzed by 16S rRNA
PCR and denaturing gradient gel electrophoresis (PCR-DGGE) in six-, eight-, 10-, and 12-week-old
MeLiM piglets, which is the age when the regressive/progressive phenotype develops. Similarly to
MALDI-TOF results, the predominance and distribution of bacterial genera were different between skin
and melanoma samples. The melanoma surface microbiome showed significantly higher microbial
diversity than healthy skin, which might be partially caused by melanoma ulceration. The number
of Fusobacteria was higher in melanoma samples compared to healthy skin and also in progressing
melanomas compared to regressing ones. In addition, the quantity of Fusobacterium necrophorum
increased with the age of piglets with progressing melanoma [247]. In human, the abundance of
Fusobacterium (particularly F. nucleatum) in the gut is connected with colorectal cancer development and
progression [248–250]. Additional studies of the MeLiM model are needed to elucidate the possible
effects of the skin microbiome on melanoma development or immune reactions in the skin.
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5.8. Experimental Therapy of MeLiM Melanoma by Tumor Devitalization

Tumor devitalization (also called devascularization) was developed by the Czech surgeon Karel
Fortýn (1930–2001) and suggested as a surgical operation technique for treatment of solid tumors.
The principle of this technique is total closure of blood supply (ischemization) to tissue by ligating
all vessels—arteries and veins—with non-absorbable material and leaving the treated tissue in situ.
This procedure was firstly experimentally tested in healthy (tumor-free) miniature pigs held in IAPG.
Segments of the small or large intestine were devitalized by ligation of the mesenteric arteries and
veins. Both ends of the devitalized intestine were also ligated (forming a blind loop), left in situ
together with its content, and the intestinal passage was renewed by anastomosis. The experimental
minipigs survived without any health complications, and the isolated intestinal segments were
gradually destroyed over four weeks without causing sepsis [251]. Based on these promising results,
devitalization was successfully applied in several elder patients (age 57–82 years) with inoperable
colorectal carcinoma. Revision operations showed a small fibrous residue at the site of the original
tumor only, and visceral metastases, ascertained before devitalization, were not found. No cancer
recurrence was observed in the patients. They died 4–7 years later of a heart attack or stroke [252].
Recently, another case report of a patient with invasive metastatic colorectal carcinoma who survived
more than 14 years after devitalization, with no sign of malignancy revealed on computed tomography
(CT) scans at present, was published [253]. Using healthy minipigs in IAPG as an anatomical and
physiological model similar to human, devitalization of the kidney [254,255], stomach [256], rectum,
and sigmoideum [257] was also carried out to acquire practical skills and experimental knowledge as a
prerequisite for possible clinical utilization. In all cases, the devitalized tissues were resorbed and no
side effects were observed.

Development of the MeLiM strain with hereditary melanoma gave us a very suitable animal model
to experimentally test the effects of tumor devitalization in vivo. Devitalization of cutaneous melanoma
is a relatively simple surgical technique. Partially overlapping mattress stitches are conducted around
the tumor base and strongly tightened; then, the tumor is left in situ without any excision [174]. More
than 40 MeLiM animals of both sexes (age 1–2 months) with progressively growing multiple cutaneous
nodular melanomas and metastases in inner organs (lymph nodes, spleen, and liver) were used in
the first larger study. Devitalization of single cutaneous melanoma led to a gradual melanoma cell
destruction in all other non-treated cutaneous melanomas, as well as inner organ metastases, over
4–6 months. Neither side effects (with the exception of local or generalized depigmentation) nor any
health complications were ascertained [169]. Melanoma cell destruction was also well documented
biochemically, showing a great reduction in α-mannosidase and tyrosinase activities in non-treated
melanomas taken six months after devitalization of another cutaneous melanoma [179].

Increased expression of two heat-shock proteins (HSPs)—HSP70 and gp96—was demonstrated
immunohistochemically and by Western blotting in the devitalized melanoma as early as one day
after treatment, which persisted for the next two weeks. The growing proportion of tumor-infiltrating
lymphocytes (cytotoxic T-lymphocytes and DP T-lymphocytes) was proven thereafter by flow cytometry
in non-treated cutaneous melanomas [258]. Both monitored HSPs are able to form complexes with
immunogenic peptides derived from cancer cells and, through antigen-presenting cells, they activate
cytotoxic T-lymphocyte responses against the HSP-bound peptides [259–261]. Based on these findings,
HSP70 and gp96-peptide vaccines derived from autologous tumor lysate were tested as a novel
promising approach for the treatment of various malignancies including metastatic melanoma.
Vitespen (formerly Oncophage) was the first personalized gp96-peptide cancer vaccine developed by
the Antigenics Inc. (New York, NY, USA) and used in randomized clinical trials [262–266]. Our finding
from devitalization experiments in the MeLiM model are in accordance with this therapeutic trend.
Long-term overexpression of HSPs, followed by significant tumor lymphocyte infiltration, suggests
that melanoma devitalization in the MeLiM model elicits a cell-mediated anti-tumor immune response.
Thus, devitalization can be considered as an immunotherapeutic technique (auto-vaccination by
necrotic tumor tissue from devitalized melanoma). At present, we apply melanoma devitalization for
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therapy of the MeLiM pigs with progressing melanoma to prolong survival and allow their inclusion
as parental animals in the MeLiM herd. Their utilization in breeding schemes increases the incidence
and severity of melanoma in this animal model.

6. Concluding Remarks

Enormous work was done in melanoma research, and even more remains to be elucidated.
The study of intrinsic tumors and in vitro cultured cells, as well as the employment of animal models,
enables us to be closer to understanding the disease etiology. The new genetic discoveries may
help us to find new therapeutic targets or molecular reporters to monitor the disease development
or therapy efficacy. Understanding the role of the immune system in melanoma control is crucial
for immunotherapies.

Animal models are indispensable in melanoma research. Various mouse models are prevailingly
utilized; however, swine models seem to be more appropriate due to anatomical, physiological,
biochemical, and genetic similarities with human. Using genetic engineering, various transgenic
swine models are available for biomedical research [267,268] including cancer [269,270]. However, no
transgenic melanoma swine model was developed until now.

Several advantages of pig models highlight their importance in melanoma research. The pig skin
structure and melanocyte distribution in pigmented skin more closely resemble the human situation
(in contrast to mouse skin). Larger litters enable studying progression and regression by comparing
sibling pairs. The long lifespan (12–18 years in miniature pig [271]) enables long-term monitoring of
pig breeds and experimental outcomes. Large animal models also allow repeated blood and tissue
sampling during the life of the individual to monitor the disease development. For example, repeated
sampling in MeLiM model allows us to monitor spontaneous regression course and the involvement
of immune cells in the disease control. Outcomes of such studies have the potential to bring new
knowledge that would be usable in studies of human melanoma and its treatment.

Two already established and well-characterized swine models with spontaneous, hereditary
melanoma—the Sinclair miniature swine and the melanoma-bearing Libechov minipig—showing
many similarities with human melanoma, seem to be the best choice for melanoma study. These models
closely resemble each other with respect to melanoma development, its spontaneous regression, and
histopathological findings. However, genes responsible for predisposition to melanoma remain to
be identified in both strains. The Hormel (Minnesota) miniature pig used in the establishment of the
Sinclair and MeLiM models could carry susceptibility genes for melanoma. The Sinclair miniature
swine is generally usable as a spontaneously regressing melanoma model because this biological
process appears in most animals. The advantage of the MeLiM model is that, in addition to the
spontaneous regression of melanoma observed in most animals, melanoma progression causing death
is regularly observed in about 5–30% of affected pigs (depending on the disease burden in parenting
individuals). Using repeated tissue and blood analyses and monitoring the health status of piglets
from birth, we are able to distinguish pigs with spontaneously regressing melanoma from those with
progressing melanoma and use them separately for studying the regression phenomenon and for the
development of new techniques for melanoma treatment. Cooperation with research groups that are
interested in large animal model melanoma research is desirable to maintain this unique swine model.
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Abbreviations

BAP1: BRCA1-associated protein-1, CDK4: cyclin-dependent kinase 4, CDKN2A: cyclin-dependent kinase
inhibitor 2A, CTLA-4: cytotoxic T-lymphocyte-associated protein 4, DP: double-positive, EGF: epidermal
growth factor, GWAS: genome-wide association study, HER: human epidermal growth factor receptor, HSPs:
heat-shock proteins, IFN: interferon, IL: interleukin, MALDI-TOF MS: matrix-assisted laser desorption/ionization
time of flight mass spectrometry, MAPK: mitogen-activated protein kinase, MC1R: melanocortin 1 receptor,
MeLiM: melanoma-bearing Libechov minipig, miRNAs: microRNAs, MITF: microphthalmia-associated
transcription factor, NF1: neurofibromin 1, PD-1: programmed cell death protein 1, PD-L1: programmed
death-ligand 1, PDX: patient-derived xenograft, PI3K: phosphatidylinositol 3-kinase, POT1: protection of
telomeres protein 1, PTEN: phosphatase and tensin homolog, RACK1: receptor for activated C kinase 1, SCID:
severe combined immunodeficiency, SLA: swine leukocyte antigen (swine major histocompatibility complex
(MHC)), TIL: tumor-infiltrating lymphocytes, TNF: tumor necrosis factor, Xmrk: Xiphophorus melanoma receptor
tyrosine-protein kinase.
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