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Microtubule-targeting agents (MTAs) constitute a diverse group of chemical compounds that bind to micro-
tubules and affect their properties and function. Disruption of microtubules induces various cellular responses
often leading to cell cycle arrest or cell death, the most common effect of MTAs. MTAs have found a plethora of
practical applications in weed control, as fungicides and antiparasitics, and particularly in cancer treatment.
Here we summarize the current knowledge of MTAs, the mechanisms of action and their role in cancer treat-
ment. We further outline the potential use of MTAs in anti-metastatic therapy based on inhibition of cancer cell
migration and invasiveness. The two main problems associated with cancer therapy by MTAs are high systemic
toxicity and development of resistance. Toxic side effects of MTAs can be, at least partly, eliminated by con-
jugation of the drugs with various carriers. Moreover, some of the novel MTAs overcome the resistance mediated
by both multidrug resistance transporters as well as overexpression of specific 3-tubulin types. In anti-metastatic

therapy, MTAs should be combined with other drugs to target all modes of cancer cell invasion.

1. Introduction

The microtubular cytoskeleton controls many vital functions in
eukaryotic cells ranging from cell division to cell movement and vesi-
cular transport. The main structural component of microtubules is the
protein tubulin. Given the importance of tubulin, it is not surprising
that it has been successfully targeted by a plethora of natural and
synthetic agents, some of which are now used in cancer treatment.

Tubulins are globular GTP-binding proteins, approximately 55 kDa
in size, and found in all eukaryotic cells. There are 23 functional genes
coding for tubulin in the human genome and they are classified into the
a, B, v, 8, and ¢ families (Findeisen et al., 2014). While tubulins vy, 8 and
¢ are mostly present in the centrosome (Chang and Stearns, 2000), a-
and B-tubulins are the main building blocks of microtubules. They first
assemble into aftubulin heterodimers and then, under favorable con-
ditions, polymerize into microtubules, which are long hollow cylinders
with a diameter of 24 nm. They usually consist of 13 protofilaments
with a so-called microtubular “lumen” in the center. All af-tubulin
subunits present in a protofilament are arranged head-to-tail and in
such a way that the B-tubulins always point towards the so-called “plus

Abbreviation:MTAs, microtubule-targeting agents

end” of the microtubule and a-tubulins point towards the “minus end”.

In the process of nucleation, new microtubules assemble from mi-
crotubule-organizing centers (MTOC) with the plus ends always
pointing outwards. The most established MTOC in human cells is the
centrosome but many cell types rely on non-centrosomal MTOC sites
situated on the Golgi apparatus membrane or elsewhere (Toya and
Takeichi, 2016). Microtubules grow by addition of new af-tubulin
subunits to the plus ends of the microtubule. These newly incorporated
subunits have two GTP molecules bound to them, one to the a-tubulin,
the other to B-tubulin. However, only the latter is able to hydrolyze GTP
to GDP, which happens shortly after incorporation into a microtubule
(Mitchison, 1993). In effect, subunits with GTP attached to [(-tubulin
form a short-lived “cap” on the plus end of each growing microtubule.
When this cap is lost, microtubules rapidly disassemble (shrink) until a
new GTP cap is formed again and microtubule can grow. Periods of
growth and shrinking alternate with periods of no apparent growth (the
pause-state). This dynamic behavior termed dynamic instability is one
of the trademark properties of microtubules (Wilson and Jordan, 1995).

Microtubules have several cellular functions, but their role in cell
division is probably the best known. Microtubules of the mitotic spindle
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attach to the kinetochores of separating chromosomes, ensuring equal
distribution of genetic material to daughter cells (Helmke et al., 2013).
However, microtubules play an important role in interphase cells as
well. One such well-documented role is in vesicular trafficking. Mi-
crotubules serve as platforms for molecular motors, i.e., kinesins and
dyneins. These protein complexes transport vesicles or other cargo over
long distances toward the plus or minus end of the microtubule.
Therefore, the function of various adhesive molecules, signaling re-
ceptors, and oncoproteins depend on the proper function of micro-
tubules (Komlodi-Pasztor, 2011). All these functions of microtubules
can be targeted by MTAs.

Diéras et al. (2008), Sternberg et al. (2013)

Larkin and Kaye (2007)
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1.1. Microtubule-targeting agents
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Microtubule-targeting agents (MTAs), also known as microtubule-
binding agents, microtubule-interfering drugs, anti-microtubule drugs,
or simply microtubule poisons, constitute a diverse group of chemical
compounds that bind to microtubules and affect their properties. Far
from being mere experimental tools for cell biologists, microtubule
drugs have a myriad of practical applications in agricultural weed
control (Anthony and Hussey, 1999), antiparasitic therapy (Fennell
et al., 2008), and cancer treatment (chemotherapy). An overview of the
chemical diversity of MTAs is presented in Table 1. Structures of the
prototypical compounds representing individual structural categories
are in Fig. 1. Structures of all compounds mentioned in the following
text are in Supplementary Fig. 1.

One way to classify MTAs is based on the position of their binding
sites on tubulin (Jordan and Wilson, 2004). The target of one group of
compounds is known as the vinca domain, which is broadly localized in
the interface between two longitudinally aligned oftubulin dimers
along one protofilament. These compounds include vincristine, vin-
blastine, vinorelbine, eribulin, and several others (Dabydeen et al.,
2006; Gigant et al., 2005). Another group is named after its most pro-
minent member, colchicine. These drugs occupy a space inside the
aftubulin dimer itself and predominantly bind to pB-tubulin. Besides
colchicine, this group includes combretastatins (e.g. combretastatin
A4), benzimidazoles (e.g. nocodazole), and other compounds, none of
which is currently in clinical use as an anticancer drug (Chatterji et al.,
2011; Wang et al., 2016). The third well-established binding pocket is
the taxane site, which is found on B-tubulin in the lumen of micro-
tubules (Alushin et al.,, 2014). Notable representatives of this group
include paclitaxel and epothilones. Interestingly, paclitaxel reaches its
binding site by passing through molecular nanopores in the micro-
tubule wall where it can also temporarily bind (Freedman et al., 2009).
There are additional binding sites beyond the three classical ones, such
as the maytansine site and the laulimalide/peloruside site, both on
Btubulin (Prota et al., 2014a, 2014b). Although these are genuine
binding sites, they can influence neighboring drug binding pockets, as is
the case with the vinca domain and maytansine site (Prota et al., 2014a)
or taxane site and the colchicine site (Gallego et al., 2017), see Fig. 2.
Additionally, a unique binding site on a-tubulin is covalently bound by
pironetin (Prota et al., 2016; Yang et al., 2016). A detailed review of
various mechanisms and sites of binding was recently published
(Steinmetz and Prota, 2018).

It should be noted that the precise interactions with amino acid
residues of drug-binding pockets can vary even between compounds of
the same group (Nettles et al., 2004; Prota et al., 2014b). Additional
diversity is brought by differential binding along the microtubule.
While some compounds preferentially target the GTP cap, others bind
along the entire length of the microtubule. The latter is especially true
for taxanes and epothilones (Nogales et al., 1995; Prota et al., 2013).
Some MTAs can even bind free tubulin heterodimers (Field et al.,
2012).

Clinical success of MTAs has been partially hampered by the
emergence of drug resistance in certain cases (Fojo and Menefee, 2007).
The most common mechanism of multidrug resistance is conferred by
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Vinca domain
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Taxane site
Maytansine domain

Vinca alkaloidconjugate
Heterocyclic nitrogen compound
Maytansine/auristatin conjugate

Macrolide

Vinca alkaloid
Peptide

Group
Combretastatin
Taxane
Epothilone

Brentuximab vedotin (Anti-CD30 antibody + monomethyl auristatin)

SAR33419 (anti-CD19 antibody + maytansine)

Vintafolide (vinflunine + folate)
TDM1 (Trastuzumab + mertansine)

Compound/Substance
Eribulin

Vincristine
Vinblastine
Vinorelbine
Vindesine
Vinflunine
Dolastatin 10
Plinabulin
Verubulin
ABT-751
Ombrabulin
Fosbretabulin
Paclitaxel
Docetaxel
Cabazitaxel
Larotaxel
Epothilone B
Ixabepilone

Microtubule-targeting agents with completed Phase II/III trials, or currently in use. Basic data concerning these agents including relevant citations are presented. Table is based on previously published data with several

updates. A - approved.

Table 1
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Eribulin

Colchicine Combretastatin A4

Paclitaxel Epothilone B

Nocodazole

Maytansine/Maitansine

Fig. 1. Structures of prototypical microtubule-binding agents.

the P-glycoprotein (Pgp) transporter, which can actively transport drug
molecules out of cells. There is also evidence that expression of certain
tubulin isotypes, such as class III B-tubulin, can desensitize cells to
microtubule drugs (Parker et al., 2017; Roque et al., 2013).

1.2. Mechanism of action

Despite having different binding sites and strategies, most studied
microtubule drugs elicit remarkably similar effects on a molecular level,
especially at the lowest effective drug concentrations. Microtubules
treated with these agents are thereafter less dynamic and often spend
more time in the pause-state, neither growing or shrinking (Jordan
et al., 1993, 1992). At the same time, MTAs can induce an increase or
decrease in the total microtubular mass. This effect is especially pro-
nounced at higher drug concentrations. Taxane site binding and lauli-
malide/peloruside site-binding compounds are “microtubule-stabi-
lizing” (i.e., increasing the microtubular mass), while vinca site-binding
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Fig. 2. Binding sites of six microtubule-binding agents situated on a fragment of
a protofilament. View from the inside of the microtubule, showing colchicine
(red), vinblastine (blue), paclitaxel (green), laulimalide (orange), maytansine
(magenta) and pironetin (yellow). Schematic image using PDB files 1SAO
(Ravelli et al., 2004), 1Z2B (Gigant et al., 2005), 1JFF (Lowe et al., 2001),
404H (Prota et al., 2014a), 4TV8 (Prota et al., 2014b) and 5LA6 (Prota et al.,
2016). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article).

agents are known as “microtubule-destabilizing” (Prota et al., 2014b;
Smith et al., 2016), see Fig. 3. Other microtubule-destabilizing sub-
stances include colchicine, combretastatins, cryptophycins, maytansine
and pironetin (Fanale et al., 2015; Prota et al., 2014a; Yang et al.,
2016). The relative contribution of both effects to microtubular dis-
ruption is still a matter of scientific debate although a computational
model has shown that both mechanisms may have a common de-
nominator (Castle et al., 2017).

Disruption of microtubules induces various cellular responses,
which can lead to cell death. The most obvious effect of these com-
pounds is observed in cells undergoing mitosis. During metaphase, the
ability of spindle microtubules to capture chromosomes is impaired by
drugs that inhibit their dynamic behavior, leading to mitotic arrest and
eventual checkpoint-induced cell death (Stanton et al., 2011). Some
studies have found a poor correlation between levels of mitotic arrest
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Fig. 3. Effect of MTAs on microtubule stability at high concentrations of the drugs. Taxanes and epothilones stabilize microtubules. Colchicine-site binding agents
prevent microtubule polymerization. Vinca-site binding agents and maytansine conjugates destabilize microtubules by blocking of the plus end of a microtubule, as
well as binding to an alternative site along the protofilament, however, the maytansine conjugates bind to a different site on the microtubule to the vinca site.
Pironetin destabilizes microtubules by binding specifically to a-tubulin. A-Tubulin is in red and B-tubulin is in green. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article).

and apoptosis (Milross et al., 1996; Shi et al., 2008) and there seem to
be additional mechanisms leading to cell death after microtubule drug
treatment. Some affected cells can slip through the first mitosis, become
multinucleated or tetraploid and die in subsequent cell cycles
(Gascoigne and Taylor, 2008; Orth et al., 2011; Zasadil et al., 2014).
Alternatively, MTAs can also be lethal to cells that are not dividing by
affecting mitosis-independent functions such as cell signaling, vesicular
trafficking, or migration (Komlodi-Pasztor, 2011). Indeed, transport of
several DNA repair proteins into the nucleus is perturbed by MTAs, thus
prolonging the effect of DNA damage induced by radiation. This could
explain why MTAs can act synergistically with DNA-damaging agents
when used in cancer treatment (Poruchynsky et al., 2015).

For any microtubule-targeting drug to be suitable for cancer treat-
ment, there must be a mechanism to selectively target cancer cells over
normal healthy cells of the human body. This could be as simple as
targeting rapidly dividing cells of the tumor by disrupting their mitotic
spindle. However, only a minority of cancer cells in a typical human
tumor are dividing at any given time, and the time window of typical
cancer treatment is fairly short (Labi and Erlacher, 2015; Rohena and
Mooberry, 2014). The observation that microtubule drugs can shrink
even slow-growing tumors has been hailed as the “proliferation
paradox”. Several hypotheses explaining this have been proposed by
various researchers. One theory suggests that cancer cells are very close
to their apoptotic threshold and can easily slip into cell death. This may
be contrary to common sense but, indeed, cancer cells constantly bal-
ance between proliferation on one hand and genomic instability, arrest,
hypoxia, and growth factor withdrawal on the other (Brown and

Wouters, 1999; Hahn, 2004; Mitchison, 2012; Ogden et al., 2015). In
fact, these sensitized tumor cells could also die independently of any
cell division by compromising their microtubule-dependent interphase
functions, such as transport of signaling molecules (Darshan et al.,
2011; Komlodi-Pasztor, 2011). Additionally, effects on tumor cells may
be exacerbated by disruption of nearby non-cancer tissue, such as the
vasculature that supplies the tumor with nutrients and oxygen (Shi and
Mitchison, 2017). Compounds featuring these therapeutic properties
are known as vascular disrupting agents and often bind to the colchi-
cine site on tubulin. They preferentially target tumor vasculature due to
its aberrant morphology characterized by a high proliferative index,
defective cell junctions, and lack of certain cell types (Kanthou and
Tozer, 2009; Porcu et al., 2014).

The number of MTAs is ever-growing, with new compounds dis-
covered every year. The common themes described above should not
obscure the fact that each of these compounds features unique mole-
cular interactions with tubulin and elicits specific functional con-
sequences leading to cell death. Ultimately, these properties not only
determine the prognosis of cancer patients but also influence the dis-
covery process for new compounds.

2. MTAs in cancer treatment
2.1. Taxanes and their significance for cancer treatment

The first taxane to be clinically used was paclitaxel (Taxol™).
Paclitaxel has been used for the therapy of ovarian cancer since 1992
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and for the therapy of breast cancer since 1994. The semi-synthetic
taxane docetaxel (Taxotere™) is used for the treatment of breast and
lung cancer (Engels et al., 2005). Paclitaxel and docetaxel are usually
combined with radiotherapy and other chemotherapeutics such as cis-
platin or trastuzumab (Choy, 2001; Cortes and Roché, 2012).

Because of cancer cell resistance, the low solubility, and cytotoxicity
of classical taxanes, novel taxane derivatives have been synthesized. For
instance, milataxel and ortataxel were partially effective in patients
with various solid tumors (Flores and Saif, 2013). Although most of
these novel derivatives did not pass their phase II trials, the novel de-
rivative larotaxel (Ren et al., 2018) was assessed as a promising an-
ticancer agent for non-small cell lung cancer, metastatic breast, and
bladder cancer. It was mostly tested in combination with cisplatin or
other taxanes (Diéras et al., 2008; Robert et al., 2010; Sternberg et al.,
2013) (see Table 1).

Currently, the most promising novel derivative is cabazitaxel
(Jevtana®), which has been approved for the therapy of hormone-re-
sistant prostate cancer (Paller and Antonarakis, 2011).

Taxanes can be covalently bound to several types of nanoparticles to
decrease their relatively high cytotoxicity. Taxane-containing nano-
particles can consist of fatty acids (Luo et al., 2010), albumin (Miele
et al., 2009), poly-L-glutamate, and other substances (Singer, 2005).
These nanoparticles are designed to preferentially target cancer cells.
Albumin nanoparticles carrying paclitaxel (Abraxan®) have been ap-
proved for the therapy of pancreas and breast cancer (Miele et al.,
2009) (see Table 1).

2.2. Cell death induction by taxanes

It is known that application of taxanes at high concentrations leads
to the collapse of microtubule dynamics resulting in necrosis (Yeung
et al.,, 1999). At lower concentrations, taxanes block the cell cycle in
mitosis and usually induce caspase-dependent apoptosis.

Alternatively, taxane can induce a mitotic catastrophe (Morse,
2005). Additionally, programmed cell death dependent on cathepsins
(Mediavilla-Varela et al., 2009), pyroptosis (Salinas et al., 2014), and
autophagy (Huo et al., 2016) have been described as minor mechanisms
of programmed cell death observed after taxane application in cancer
cells.(Adams et al., 2016)

Taxane-mediated induction of apoptosis involves activation of in-
itiator caspases (caspase-2, caspase-8 and caspase-9) and down-
regulation of proteins of the Bcl-2 family. The role of caspase-8 seems
controversial since activation of death receptors is not supposed to be a
key step in taxane-induced apoptosis (Jelinek et al., 2015). However,
activation of caspase-8 may possibly be mediated by FADD (Fas-asso-
ciated protein with death domain) protein, or by other caspases, as
previously described in lymphoma or breast cancer cells (Jelinek et al.,
2015; Von Haefen et al., 2003). The formation of the apoptosome fol-
lowed by activation of caspase-9 is crucial for apoptosis induction in
many types of cancer cells (Fauzee et al., 2012; Janssen et al., 2007;
Sharifi et al., 2014). Recently, apoptosis induction was observed to
depend on caspase-2 activation in breast (Jelinek et al., 2013), mela-
noma (Mhaidat et al., 2007), and prostate (Luo et al., 2010) cancer
cells. All three known executioner caspases, i.e., caspase-3, caspase-6
and caspase-7 seem to be involved in taxane-induced apoptosis execu-
tion.

Taxanes are able to bind antiapoptotic proteins of the Bcl-2 family
and decrease their activity (Ferlini et al., 2009). Moreover, the levels of
Bcl-2 and Bcl-xL are often seen to decrease as a result of inhibitory
phosphorylation after taxane application (Sharifi et al., 2014; Yoshino
et al., 2006; Zheng et al., 2017). Taxanes also release the Bak protein
from the Bak/Bcl-xL complex (Flores et al., 2012). Such processes ul-
timately lead to the formation of Bax channels in mitochondria mem-
branes and apoptosis induction. The BH3-only Bcl-2 proteins, i.e., the
Bad (Craik et al., 2010; Fauzee et al., 2012), and Bim (Ajabnoor et al.,
2012; Li et al., 2005; Savry et al., 2013) proteins, seem to be

European Journal of Cell Biology 99 (2020) 151075

significantly involved in cell death induced by taxanes. However, elu-
cidation of the precise mechanism of their effect needs further studies
(Jelinek et al., 2017).

2.3. Resistance of cancer cells to taxanes

Long-term treatment and repeated application of taxanes may lead
to the development of drug resistance in cancer cells, which represents
a serious obstacle in taxane therapy. Developed taxane resistance can
be based on the overexpression of transporters of the ABC family
(Duran et al., 2015), tubulin mutations or production of a different
tubulin class (McGrogan et al., 2008), increased taxane metabolism
(Vaclavikova et al., 2006) or insufficient induction of programmed cell
death, especially apoptosis (Jelinek et al., 2013).

ABC transporters translocate hydrophobic molecules across the
plasma membrane in order to protect cancer cells against the effect of
these molecules. The ABCB1 transporter (P-glycoprotein) is the most
clinically important protein of this family. This transporter very effec-
tively moves taxanes out of cancer cells, thus making taxane therapy
ineffective (Aldonza et al., 2016; Hansen et al., 2015; Jelinek et al.,
2018). Other members of the family, e. g. ABCC3, have also been de-
scribed as taxane transporters (Némcova-Fiirstova et al., 2016).

The resistance of cancer cells to taxanes can also be caused by
mutations in the [B-tubulin gene causing changes in the structure of
important parts of the B-tubulin molecule, e.g. the taxane-binding site
(Hari et al., 2006). These mutations can alter the affinity of taxanes
towards microtubules or the ability of taxanes to block dynamics of
microtubules. This type of resistance can be overcome by using dif-
ferent non-taxoid MTAs, some of which are discussed below. Some re-
sistant cancer cell lines produce different classes of p-tubulin, most
frequently BIII-tubulin (Kamath et al., 2005; McGrogan et al., 2008).
This class of tubulin is not as readily polymerized by taxanes in vitro
and in vivo (Mhaidat et al., 2008; Person et al., 2017; Seve et al., 2005).
Indeed, some novel MTAs are designed specifically to block dynamics of
the BIlI-class tubulin as well (Matesanz et al., 2014; Pepe et al., 2009).
Taxane resistance has been associated with microtubule-binding pro-
teins, microtubule-regulating proteins, and mutations in a-tubulin
(Martello et al., 2003; Singer et al., 2009; Smoter et al., 2011; Sun et al.,
2015).

Resistance associated with insufficient induction of programmed
cell death has been observed, for instance, in breast cancer cells where
autophagy was induced and concurrently apoptosis was suppressed
(Ajabnoor et al., 2012; Veldhoen et al., 2013). Taxane resistance is
often a consequence of defective apoptosis induction. This is commonly
the result of higher levels or higher activity of anti-apoptotic proteins of
the Bcl-2 family. On the other hand, it can be the result of lower levels
or lower activity of pro-apoptotic proteins of the Bcl-2 family (Fauzee
et al., 2012; Mhaidat et al., 2007; Watanabe et al., 2013; Yoshino et al.,
2006). Indeed, a deficiency in activation of initiator or executioner
caspases has often been assessed as being responsible for cancer cell
resistance (Ho et al., 2008; Jelinek et al., 2015; Mhaidat et al., 2007). A
role of the BH3-only proteins of the Bcl-2 family remains questionable
since resistant cancer cells have differing levels of these proteins (Craik
et al., 2010; Fauzee et al., 2012; Jelinek et al., 2017; Miller et al., 2013).

2.4. Vinca alkaloids and their significance for cancer treatment

The vinca alkaloids used for cancer therapy are vincristine (VC),
vinblastine (VBL), vindesine (VDS), vinorelbine, and vinflunine. VBL
and VC are used for the therapy of breast cancer, lymphomas, and
sarcomas. Further, they are components of several types of combination
treatments. Vinorelbine was approved by the FDA in 1994 for treatment
of breast cancer and non-small-cell lung cancer and sarcomas (Martino
et al., 2018). Interestingly, vinorelbine at low concentrations sup-
pressed angiogenesis in tumors (Biziota et al., 2016). The fluorine-
containing vinca alkaloid vinflunine (Bellmunt et al., 2009) (Javlor™)
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was approved in 2012 for the treatment of urothelial cancer (Retz et al.,
2015).

Many other agents like eribulin and dolastatins 10 and 15 bind at
the same B-tubulin site as vinca alkaloids. Eribulin was approved for
relapsed metastatic breast cancer (Twelves et al., 2010) and lipo-
sarcomas (Schoffski et al., 2016), and tested in advanced breast cancer,
triple negative breast cancer, bladder cancer, and salivary gland cancer
(usually after anthracycline and taxane therapy) (Kumar et al., 2017).
Furthermore, eribulin was able to remodel abnormal tumor vasculature
in mice breast cancer xenograft models, a process expected to reduce
tumor growth and aggressiveness (Funahashi et al., 2014). Dolastatin
10 and its analogs are currently being intensively tested in cancer cells
(see Table 1) (Akaiwa et al., 2018).

According to recent studies, maytansinoids and auristatins occupy
binding sites close to the vinca alkaloid binding site but they are more
effective in depolymerization of microtubules, probably due to the
much higher affinity of these drugs to microtubules (Lopus et al., 2010).
Because they are themselves toxic, antibody-containing conjugates re-
present a very promising strategy. T-DM1, trastuzumab + emtansine
(maytansinoid), was approved for metastatic breast cancer (Geraud
et al., 2017). SAR3419, composed of anti-CD19 antibody and may-
tansine, reached phase II in diffuse large B-cell lymphoma (Kantarjian
et al., 2016). Brentuximab vedotin, which consists of an anti-CD30
antibody linked to monomethyl auristatin E, was recently tested in
Hodgkin lymphoma (see Tablel) (Moskowitz, 2015).

2.5. Other MTAs and their significance for cancer treatment

Epothilones are agents that bind to the taxane-binding site. These
drugs are effective in cell death induction, especially in paclitaxel-re-
sistant cancer cells, generally because they are not bound so effectively
by P-glycoprotein as classical taxanes. They are easier to administer
than taxanes, having good water solubility, and can pass through the
blood-brain barrier (Forli, 2014). Epothilone B has passed phase II in
the treatment of lung cancer (Larkin and Kaye, 2007). Moreover, ix-
abepilone (Ixempra™) has been approved for the treatment of meta-
static breast cancer and relapsed endometrial cancers (McMeekin et al.,
2015; Rugo et al., 2015). Ixabepilone is now being tested on many types
of cancers including colorectal, cervical, breast, renal, BIII-tubulin-po-
sitive lung, and triple negative breast cancer (Forli, 2014). PM060184
(plocabulin) tested in phase I in several advanced solid tumors (Elez
et al., 2018) or pre-clinically tested zampanolide, that binds tubulin
covalently in contrast to the other agents (Field et al., 2017), represent
other promising agents that bind at the taxane site or close to it (see
Table 1).

Marine sponge-derived agents peloruside A and laulimalide, which
bind microtubules at a specific site different from the taxane site and
stabilize them, are promising anticancer drugs (Johnson et al., 2007;
Liu et al., 2007; Meyer et al., 2015). These agents induce death in
cancer cells in vitro as well as in vivo, but their wider employment
needs futher development to overcome their high systemic toxicity
(Kumar et al., 2017; Liu et al., 2007).

One of the MTAs tested as an anticancer agent already decades ago
is colchicine. Colchicine, a well-known microtubule-destabilizing drug,
is not used in cancer therapy due to its high cytotoxicity (Kumar et al.,
2016). However, other agents that bind to the colchicine-binding site
seem to be more suitable. For example, plinabulin, verubulin (MPC-
6827), BAL101553, and ABT-751 also bind to the colchicine-binding
site. Plinabulin and AB-T-751 have been tested as anticancer regimens
for non-small lung cancer (Gridelli et al., 2009) whereas verubulin in
combination with carboplatin has passed phase I testing in glioblastoma
(Grossmann et al., 2012). Interestingly, BAL101553 has recently en-
tered phase Ila testing in ovarian cancer and glioblastoma patients
(Joerger et al., 2019).

Combretastatins represent an important group of agents that bind to
the colchicine-binding site. For example, combretastatin ombrabulin
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has been shown effective in ovarian cancer therapy (Tae et al., 2007).
Fosbretabulin, another combretastatin, has been shown effective in
combination with other agents in treating lung cancer and thyroid
carcinoma (Garon et al., 2016; Mooney et al., 2009). It should be
mentioned that although these agents induce cell death in cancer cells
by themselves, more significant is their targeting of endothelial cells
and hence suppression of tumor growth by blocking angiogenesis (see
Table 1) (Micheletti et al., 2003).

2.6. Basic approaches for discovering novel MTAs

The goal of the design of novel MTAs is to prepare effective, re-
sistance proof agents that will induce cell death in all cancer cells while
sparing non-cancer cells. Additionally, the anticancer effect of the drugs
should be prolonged, e.g. by inhibiting their own metabolism. This can
be realized by insertion of various heteroatoms (e.g., fluorine or heavy
metal atoms) into the MTA molecule (Jelinek et al., 2017).

2.6.1. Fighting resistance of cancer cells

Resistance of cancer cells to traditional anticancer MTAs is often
determined by the expression of ABC transporters or specific tubulin
classes. Novel MTAs should have structures that are not recognized and
transported by P-glycoprotein and other ABC transporters (Duran et al.,
2015; Oba et al., 2016). Furthermore, they should preferably bind to
the classes of B-tubulin found in resistant cancer cells, namely BIII-tu-
bulin (McGrogan et al., 2008; Mhaidat et al., 2008; Yeh et al., 2016).

Probably the most important approach is represented by the pre-
paration of new molecules, usually derivatives of existing proved drugs.
Concerning newly prepared taxane derivatives, these compounds
usually have various functional substituents at positions C3”, C3°N, and
C10 (Jelinek et al., 2018; Ojima et al., 1998, 1996). Recently, we have
reported that phenyl groups at positions C3” and C3’N could play an
important role in taxane binding and transport by P-glycoprotein. De-
rivatives, such as SB-T-1216, with one or both phenyl groups replaced
with non-aromatic substituents were not bound by P-glycoprotein so
effectively and hence not transported from taxane-resistant cancer cells
(Fig. 4) (Jelinek et al., 2018). Other chemical groups of the taxane
molecule have also been reported to be important for binding into the
pocket of P-glycoprotein (Alam et al., 2019). Thus it seems that there is
certain variability in binding of taxanes to P-glycoprotein.

Beside taxane-like drugs, new derivatives of colchicine binding site-
targeting drugs have also been reported. The most common modifica-
tion is a change of the C ring of the colchicine molecule. Some of these
new agents have shown promising results in various cancer cells
(Kumar et al., 2016).

2.6.2. Sparing non-cancer cells

A very promising approach to avoid toxic side effects of drugs is
based on chemically linking the drug to a carrier molecule to create a
hybrid molecule (a conjugate) that preferentially targets cancer cells.
Podophyllotoxin, combretastatins, noscapine, and vinca hybrids have
been synthesized and tested with diverse results (Tangutur et al., 2017;
Yurkovetskiy et al., 2015). For instance, vintafolide (a conjugate of
vinflunine and folate) is effective in growth suppression of advanced
ovarian and endometrial cancer and is a promising example of these
types of molecules (Assaraf et al., 2014).

3. Potential use of MTAs as migrastatics
3.1. Cancer metastasis

In addition to cytotoxic activity, MTAs are now being considered for
new approaches to cancer treatment that target the development of
metastases. The ability to form metastases is the deadliest property
cancer cells can acquire. Primary tumor cells can spread throughout the
body and potentially form secondary tumors in a multistep process
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Fig. 4. Structure-function relationship of taxanes and the P-glycoprotein-binding site. (A) Structure of paclitaxel and SB-T-1216. Paclitaxel has two aromatic (phenyl)
groups at C3” and C3°N positions. The novel taxane derivative, SB-T-1216, has 2-methylpropyl at the C3” position and tert-butoxycarbonyl at the C3°N position. The
positions are highlighted with green frames. (B) Interaction of taxanes and the binding site of P-glycoprotein. Paclitaxel can readily bind to the taxane-binding site of
P-glycoprotein by its R1 and R2 phenyl groups. The bond is significantly weaker for SB-T-1216 because of missing phenyl groups. Thus, paclitaxel can be transported
out of the cells by P-glycoprotein more effectively than SB-T-1216 which can induce cell death in cancer cells that are resistant to paclitaxel due to P-glycoprotein
overexpression. Interactions between paclitaxel and P-glycoprotein through paclitaxel’s phenyl groups and absence of these groups in SB-T-1216 are highlighted with

red frames. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

called the metastatic cascade (Riggi et al., 2018). Local invasion of
tumor cells into the surrounding extracellular matrix or cell mass is the
first step in the metastatic cascade. Cells can invade through tissues
either collectively or individually. During a collective invasion, the
intercellular adhesions remain preserved and the cells migrate as
strands, tubes, sheets, or irregular masses (Friedl and Gilmour, 2009).
Individual invasion is the penetration of single cells and can occur in
the mesenchymal or amoeboid mode (Pandya et al., 2017; Pankova
et al., 2010; Te Boekhorst and Friedl, 2016). A mesenchymal, fibroblast-
like invasion can be recognized by the typical elongated, spindle-like
morphology of individually invading cancer cells and by their relatively
unidirectional persistence. Mesenchymal migration depends on local
degradation of the extracellular matrix (ECM) by proteolytic enzymes
secreted preferentially from actin-rich adhesion structures called in-
vadopodia (Linder et al., 2011; Tolde et al., 2010).

The morphology of amoeboid cells is typically round or ellipsoid in
3D conditions and their migration shows little directional persistence.
Amoeboid cancer cell invasion is accompanied by contractions of cor-
tical actin, which is regulated by the Rho-ROCK (rho-associated protein
kinase) signaling pathway (Kosla et al., 2013), and by polarized
membrane flow, which underlies cell translocation (O’Neill et al.,
2018). Motile cancer cells can adapt their invasion mode to cope with
different conditions, a phenomenon called invasion plasticity (Te
Boekhorst and Friedl, 2016).

The development of metastases is determined by complex interac-
tions among cancer cells and several types of host cells in the tumor
microenvironment at both primary and secondary sites (Yang and Lin,
2017). Besides migration of cancer cells, the establishment of secondary
tumors also depends on the migration of non-transformed cell types
that contribute to the tumor microenvironment (cancer-associated fi-
broblasts, tumor-associated macrophages, endothelial cells, and other
cell types). All these migratory processes, except amoeboid invasion of
cancer cells, require microtubules and thus are potential targets of
MTAs in preventing cancer progression to the metastatic stage.

3.2. Cell migration-related effects of MTAs

The effects of different classes of MTAs on cell migration have been
studied in standard 2D conditions as well as in more sophisticated 3D
cell culture conditions, with substantial discrepancies observed.
Nocodazole, a synthetic drug binding to the colchicine site on f3-tubulin,
was found to robustly stabilize focal adhesions in cells spread on stiff
2D surfaces and to prevent migration by inhibiting focal adhesion
turnover (Ezratty et al., 2005; Kadi et al., 1998). However, in 3D con-
ditions, nocodazole induces cell rounding but does not decrease, and in
some cases, even increases migration speed while reducing migration
directionality (Makiyama et al., n.d.; Schweisguth et al., 1971). These
effects correspond to the mesenchymal-amoeboid transition (MAT). In
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Fig. 5. Effects of low concentrations of MTAs on cancer progression. MTAs can
target cancer progression at low concentrations through a few different me-
chanisms. Tumor angiogenesis is highly sensitive to MTAs. Hedgehog signaling
is dependent on intact microtubules and can be effectively inhibited by MTAs.
Formation and elongation of invadopodia are impaired by MTAs. Microtubules
are depicted as green tubes. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article).

another experimental situation, when cells are placed on the top of a
layer of ECM material, nocodazole inhibited elongation of invadopodia,
preventing mesenchymal invasion (Kikuchi and Takahashi, 2008;
Schoumacher et al., 2010), Fig. 5. In addition, pseudopod-based me-
senchymal migration within 3D matrices is uniquely dependent on in-
tact microtubule dynamics as opposed to 2D conditions (Bouchet et al.,
2016). Microtubule-stabilizing drugs inhibit cell migration as well
(Field et al., 2017; Grigoriev et al., 1999). 3D mesenchymal migration
was found to be 100-fold more sensitive to paclitaxel than 2D migration
(Jayatilaka et al., 2018). For a detailed review of the role of micro-
tubules in 3D migration see (Bouchet and Akhmanova, 2017). Im-
portantly, the migration-inhibitory effects of MTAs have been observed
at concentrations much lower than those required for cytostatic effects.
For instance, it was demonstrated that sub-toxic concentrations of
colcemid (a colchicine derivative) or vinblastine are sufficient to inhibit
plus-end microtubule dynamic instability and cell migration without
affecting cell division or microtubule assembly (Yang et al., 2010). Si-
milarly, the microtubule stabilizing drug epothilone B inhibits migra-
tion of glioblastoma cells at non-cytotoxic concentrations by inducing
microtubule catastrophes and affecting EB1 accumulation at the mi-
crotubule plus ends (Pagano et al., 2012).

3.3. Both established and newly forming tumor vasculature are highly
vulnerable to MTAs

MTAs were originally thought to act mainly through mitotic spindle
disruption and subsequent apoptosis induction. Hill et al. demonstrated
that vinca alkaloids dramatically decrease blood flow through tumors
followed by necrosis of tumor tissue (Hill et al., 1993). The underlying
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mechanism involves disruption of the tumor endothelial cell cytoske-
leton and junctions between endothelial cells. This results in leaky
vessels, congestion within the blood vessels, blocked blood flow, and
ultimately tumor necrosis (Siemann et al., 2004; Tozer et al., 2005).
The preferential targeting of tumor vasculature by MTAs, as opposed to
that of normal vasculature, is due to the relative immaturity and in-
stability of tumor vasculature (Siemann, 2011). In addition to vinca
alkaloids, the vascular disruption effect of MTAs has also been de-
monstrated with other microtubule-depolymerizing agents (Kanthou
and Tozer, 2007; Sherbet, 2017). Studies of the mechanistic details,
using in vitro experiments, revealed that microtubules are required to
stabilize endothelial cell protrusions in soft 3D conditions (Lyle et al.,
2012) and microtubule depolymerization is particularly disruptive
when endothelial cells interact with pliable 3D matrices (Martins and
Kolega, 2012). Depending on the MTA concentration, tumor vascu-
lature might not be disrupted, but the formation of new blood vessels
might be prevented. This milder effect, i.e., inhibition of neo-angio-
genesis at low, non-toxic concentrations has been demonstrated for
several MTAs, for example, paclitaxel, docetaxel, vinblastine, and
epothilone B (Bijman, 2006). This is especially important from the
perspective of long-term anti-metastatic therapy.

3.4. Hedgehog signaling in cancer metastasis and its targeting by MTAs

An interesting target of MTAs in cancer therapy is the hedgehog
(Hh) signaling pathway. Under physiological conditions, Hh signaling
controls embryonic patterning, organ morphogenesis, tissue regenera-
tion, and regulates self-renewal in stem cells. Aberrant activation of
hedgehog signaling is responsible for the initiation of several cancers
including glioblastoma, melanoma, medulloblastoma, rhabdomyo-
sarcoma, basal cell carcinoma, and carcinomas of pancreas, lung,
prostate, ovary, and breast. Its pharmacological inhibition has already
been tested in cancer treatment with varied success (Armas-Lopez et al.,
2017; Pak and Segal, 2016). Hh signaling has been demonstrated to
promote metastasis through activation of the epithelial-mesenchymal
transition (EMT), increased expression of ECM degrading enzymes, and
enhancing the stemness of cancer cells (Wang et al., 2018). Hh signaling
is essential for metastasis of colon carcinoma (Varnat et al., 2009),
while inhibition of Hh signaling inhibits pancreatic cancer invasion and
metastases (Feldmann et al., 2007). The anti-metastatic effect of MTAs
could be partly mediated by inhibition of the Hh pathway since its
activation depends on intact microtubules (Khatra et al., 2018; Kim
et al., 2010; Larsen et al., 2015), Fig. 5.

3.5. Anti-metastatic potential of MTAs

The aim of anti-metastatic therapy is to block any dissemination of
the primary tumor, regardless of primary tumor mass shrinkage or
growth prevention. However, the possibility of clinically testing drugs
specifically for their anti-metastatic effects requires a radical paradigm
shift in the thinking of clinical trial regulatory bodies and the phar-
maceutical industry and is a matter for the distant future (Rosel et al.,
2013). The anti-metastatic approach faces many procedural, regulatory,
and economic challenges, but is at least starting to be seriously con-
sidered (Anderson et al., 2019). The use of anti-metastatic therapy
would be most justified in following situations: First, an early diagnosis
of a tumor with a well-known high propensity to metastasize, but still
without detectable metastases (e.g., melanoma, glioblastoma, carci-
noma of the esophagus); second, after removal of a primary tumor
known to metastasize after a prolonged period of time (e.g., breast
carcinoma); and third, as companion therapy to anti-angiogenic treat-
ments that were, in some cases, shown to promote cancer metastasis
due to hypoxia, necrosis, and inflammation (Ebos et al., 2009; Paez-
Ribes et al., 2009). In case of tumors that have already metastasized,
the anti-metastatic treatment may still be beneficial, as additional
metastases can originate from secondary sites, e. g. in lymph nodes, as



V. Cermdk, et al.

well (Brown et al., 2018; Pereira et al., 2018).

There is one great hypothetical advantage to the anti-metastatic
approach: While cancers, through mutation and selection, develop
mechanisms to sustain proliferation and will eventually overcome most
if not all cytostatic therapies, targeting cancer cell migration with
specific drugs, e.g., migrastatics, will likely not exert any selection
pressure on the cancer cell population. Migrastatic-based anti-meta-
static therapy thus could offer long-term control of a disease, if the
primary tumor has been sufficiently managed with surgery or other
means. The major expected weakness of the anti-metastatic approach is
obviously the issue of timeliness, i.e., it needs to be used before the
tumor has already spread. The ongoing improvement in early cancer
diagnosis with novel imaging techniques and blood-based tests will
expectedly ameliorate this problem (Schiffman et al., 2015).

In standard cytostatic therapy, short-term aggressive treatments,
aimed at primary tumor shrinkage or precluding tumor relapse after
surgery, are used despite severe side effects and high toxicity (max-
imum tolerable dose approach). Anti-metastatic therapy has almost the
opposite requirements, i.e., toleration of long-term therapy by the pa-
tient is the most important concern. To be effective, anti-metastatic
therapy would have to be started as soon as possible and continued for
extended periods of time, maybe indefinitely. This would depend on
how reliably and completely the primary tumor had been removed and
on the long-term persistence of cancer cells released from a primary
tumor in bone marrow or other sites (Fehm et al., 2008). Such approach
is similar to metronomic chemotherapy where frequent application of
low doses of cytostatic drugs sustains stable, but long-term tolerable
blood levels of the drugs. Recent advance in preclinical models of me-
tronomic chemotherapy brought promising results even in advanced
metastatic disease (Kerbel and Shaked, 2017) and several tens of new
clinical studies have been approved (see https://clinicaltrials.gov).
Some of these studies even include MTAs (e.g. vinorelbine).

Cancer cell invasion can be targeted in many ways (Gandalovicova
et al., 2017). However, not all molecular targets allow long-term in-
terference with acceptable side-effects. MTAs with their potential to
target molecular mechanisms essential for cancer cell invasion and
formation of secondary tumors, at non-toxic concentrations, are very
important migrastatics candidates.

In the migrastatic therapy regimen, the dosage of an MTA must not
be cytostatic (i.e., targeting the mitotic spindle) but instead act via
subtler mechanisms affecting only cancer cell invasion and migration,
expectedly with concomitant inhibition of neo-angiogenesis. The con-
ventional cytostatic MTAs from the taxane and vinca groups are con-
ceivable migrastatics candidates, although finding long-term tolerable,
non-toxic, but still effective dosages of these drugs might be more dif-
ficult than with some other types of MTAs. Moreover, paclitaxel was
found to exacerbate metastasis in a mouse model of breast cancer, al-
though this effect may be a non-specific consequence of any cytostatic
chemotherapy as it was also observed with other cytostatic drugs
(Chang et al., 2017; Karagiannis et al., 2017). Other types of MTAs
might be preferable. There are a few well-tolerated MTAs currently in
use for cancer-unrelated indications (e.g., the antihelmintics me-
bendazole and albendazole) that are still able to target microtubule-
dependent processes at doses similar or only slightly higher than those
used for their primary purpose (Ghasemi et al., 2017; Larsen et al.,
2015; Pinto et al., 2015; Spagnuolo et al., 2010). Mebendazole is cur-
rently being tested in several clinical trials in different settings and
phases for various types of cancer (source: https://clinicaltrials.gov).
Another group of drugs deserving attention is the vascular disrupting
agents. These drugs are being or have already been tested as compo-
nents of chemotherapeutic regimens, for example, combretastatin A4
(Grisham et al., 2018; Sherbet, 2017). If effective at non-toxic con-
centrations these compounds could become useful migrastatics since a
substantial amount of data about their safety and side effects will be
available. There is an ongoing effort toward further improvement of
these drugs. For instance, derivatives of combretastatin A4 with potent

European Journal of Cell Biology 99 (2020) 151075

anti-invasion properties and decreased toxicity have been reported
(Mahal et al., 2015).

In summary, of the drugs targeting microtubules, those with proven
long-term safety and the potential to selectively target various micro-
tubule-dependent processes through optimized dosing are promising
candidates for future anti-metastatic therapy. Their therapeutic poten-
tial must be tested in suitable clinical studies, as part of the first-line
and sustained therapy in patients with primary tumors expected to
disseminate, but still without detectable metastasis.

4. Conclusion

MTAs are an important group of time-proven anticancer drugs, still
holding a great potential for improvement in terms of increased efficacy
and safety, and overcoming resistance. Beside classical taxanes (pacli-
taxel and docetaxel), novel derivatives (e.g. cabazitaxel) or novel for-
mulations (e.g. Abraxan™ - paclitaxel loaded on albumin particles) have
been approved for treatment of cancer and many other related drugs
were or are being developed. Other classes of taxane site binding MTAs,
epothilones (e.g. epothilone B and ixabepilone) and zampanolide have
been extensively tested. Ixabepilone has already been approved for
cancer treatment. Apart from the classical vinca alkaloids vincristine
and vinblastine, novel vinca alkaloids vinflunine and the vinca site
binding agent eribulin have been approved for cancer treatment. Other
drugs binding the vinca site or close to it (dolastatin 10, dolastatin 15,
conjugates of antibodies with maytansinoids or auristatins) are also
very promising anticancer drugs. Finally, plinabulin, verubulin, and
combretastatins, all binding to the colchicine site in tubulin, have at-
tracted much interest and have been or are being tested clinically.

To overcome resistance of cancer cells, drugs with modified struc-
ture prolonging their effect or drugs not recognized by transporter
proteins are being prepared and tested. To increase specificity towards
cancer cells, conjugates of anticancer MTAs and targeting molecules
have been synthesized.

In addition to improved cytostatic action of next generation MTAs
and their advanced formulations, these drugs are also plausible candi-
dates for specific anti-metastatic therapy. By targeting several processes
required for cancer cell migration and colonization of distant sites at
non-toxic concentrations, safe, long-term tolerated regimens could be
developed to preclude metastatic spreading of cancers. However, a pre-
requisite for this approach is a radical progress in how the new ther-
apeutic regimens are designed, tested and evaluated.
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