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Abstract: Squamous cell carcinomas (SCCs) in the anogenital and head and neck regions are associ-
ated with high-risk types of human papillomaviruses (HR-HPV). Deregulation of miRNA expression
is an important contributor to carcinogenesis. This study aimed to pinpoint commonly and uniquely
deregulated miRNAs in cervical, anal, vulvar, and tonsillar tumors of viral or non-viral etiology,
searching for a common set of deregulated miRNAs linked to HPV-induced carcinogenesis. RNA
was extracted from tumors and nonmalignant tissues from the same locations. The miRNA expres-
sion level was determined by next-generation sequencing. Differential expression of miRNAs was
calculated, and the patterns of miRNA deregulation were compared between tumors. The total
of deregulated miRNAs varied between tumors of different locations by two orders of magnitude,
ranging from 1 to 282. The deregulated miRNA pool was largely tumor-specific. In tumors of the
same location, a low proportion of miRNAs were exclusively deregulated and no deregulated miRNA
was shared by all four types of HPV-positive tumors. The most significant overlap of deregulated
miRNAs was found between tumors which differed in location and HPV status (HPV-positive cervi-
cal tumors vs. HPV-negative vulvar tumors). Our results imply that HPV infection does not elicit a
conserved miRNA deregulation in SCCs.

Keywords: squamous cell carcinoma; human papillomavirus; microRNA

1. Introduction

Human papillomaviruses (HPV), species-specific viruses infecting mucosal and cu-
taneous epithelium of the host, can cause benign diseases such as papillomata or warts;
however, some HPV types have oncogenic potential and are reported to be responsible for
up to 5% of all tumors worldwide and up to 30% of those whose development is attributed
to infectious agents [1]. The most common carcinoma associated with HPV infection is
cervical cancer, which is caused by HPV in almost 100% of cases. HPV is also associated
with other tumors of the anogenital region such as vaginal tumors, where HPV participates
in 78% of cases, vulvar tumors with 25% of HPV-positive cases, anal tumors with almost
90% of HPV-positive cases, and penile tumors with 50% of HPV-positive cases [2]. The
second region where HPVs play the etiological role in cancer development is head and neck,
especially the oropharyngeal location [3]. The proportion of HPV-associated oropharyngeal
cancers is increasing around the world, reaching 40–80% of cases in the USA and 20–90%
of cases throughout Europe [4–6].

The proper molecular profiling of HPV-positive and HPV-negative tumors and com-
parisons of differences between the two etiologies is necessary for expanding our under-
standing of the mechanisms of carcinogenesis. There are only few publications addressing
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the differences in molecular profiles between HPV-associated and HPV-independent tu-
mors. Koncar et al. determined the expression of 24 proteins by immunohistochemistry,
mutations of 48 genes by sequencing, and copy number alterations for six genes by in situ
hybridization for cohorts of vulvar, anal, cervical, and oropharyngeal tumors, reporting the
HPV-positive tumors to have similar molecular profiles [7]. However, the HPV positivity
in their samples was determined based on the p53 status, which is not an established surro-
gate marker for the detection of HPV. Nevertheless, Tuna and Amos compared The Cancer
Genome Atlas (TCGA) database data from studies analyzing HPV-driven tumors; they
found similar genomic alterations in HPV-negative and HPV-positive cases but also de-
tected distinct epigenomic and transcriptomic profiles between these groups [8]. Genomic
comparison of HPV-positive and HPV-negative oral squamous cell carcinomas (SCCs) was
performed by Gillison et al. and they specified a number of unique genetic features for
virus-associated tumors [9]. Similarly, significant genetic differences between HPV-positive
and HPV-negative tumors were revealed in several other studies [10,11]. So far, only two
studies using whole-exome sequencing of vulvar tumors with regard to HPV positivity
have been published [12,13]. They have shown that genetic alterations in vulvar carcino-
mas encompass mutations and copy number alterations that differ between HPV-positive
and HPV-negative cases, in addition to common alterations observed irrespective of the
HPV status.

Promising specific, sensitive, and clinically significant biomarkers are miRNAs, small
single-stranded non-coding RNAs that regulate gene expression and play an important
role in cell development, growth, and differentiation. Their expression has been reported to
be deregulated in tumors. MicroRNAs play a role in stimulating tumor growth by negative
regulation of tumor suppressor genes or by positive regulation of oncogenes. Specific
miRNA profiles have been reported in many studies of various tumors, for example,
of leukemia, breast cancer, lung cancer, or prostate cancer [14–18]. Numerous studies
focused on the analysis of miRNA profiles in cervical cancer [19–22]; however, miRNA
expression in tumors of the rest of anogenital regions is less researched, with only two
studies analyzing miRNA profiles in vulvar cancer [23,24]. MicroRNA expression in head
and neck cancers has been increasingly studied, and several studies on cell lines or tumors
have been published [25–29]; however, they did not examine their association with HPV
status. HPV status was addressed in two studies of Lajer et al. [19,30] who defined the
group of core HPV miRNAs specific for two types of HPV-positive tumors, cervical and
head and neck. Furthermore, Miller et al. analyzed miRNA expression in HPV-positive
and HPV-negative oropharyngeal carcinomas and validated the data against The Cancer
Genome Atlas, identifying HPV-associated oncogenic miRNAs [31]. In our previous study,
we focused on miRNA profiles in HPV-negative and HPV-positive tonsillar tumors and in
cervical tumors and on the comparison with a model system of keratinocyte clones [32]
and defined the core HPV miRNAs, but they did not overlap with those from the study by
Lajer et al. The lack of comparability between the outcomes of these studies can be most
likely attributed to the anatomical heterogeneity of the analyzed head and neck tumors
and to the different methodological approaches.

In our study, we analyzed the miRNA expression profiles in a set of anogenital
tumors associated with HPV, namely, cervical, vulvar, and anal tumors, and in a set of
tonsillar tumors by next-generation sequencing (NGS) in an attempt to identify commonly
deregulated miRNAs exclusive for HPV-dependent SCCs. To our knowledge, this is the
first study to analyze miRNA profiles in four HPV-driven types of tumors which employs
a unified methodological approach. Furthermore, this study provides miRNA expression
analysis of insufficiently researched anal and vulvar carcinomas.

2. Materials and Methods
2.1. Clinical Samples

Samples of SCCs were obtained from the Department of Pathology and Molecular
Medicine, 2nd Faculty of Medicine, Charles University and Motol University Hospital,
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Prague, and from the Institute of Pathology, 3rd Faculty of Medicine, Charles University
and University Hospital Kralovske Vinohrady, Prague. All tissue samples originated
from unique patients. Formalin-fixed paraffin-embedded (FFPE) samples prepared from
tumor tissues were stained and macrodissected [32]. The HPV status of FFPE samples was
determined by P16 immunochemistry and HPV DNA detection [33]. All HPV-positive
tumors contained high-risk HPV16. For each anatomical location (tonsillar, cervical, vulvar,
anal), the sample set consisted of three HPV-positive tumors, three HPV-negative tumors,
and three samples of normal tissue. Cervical HPV-negative tumors were not included due
to their unavailability.

2.2. Sample Processing for NGS

Total RNA was isolated from macrodissected sections of FFPE samples using AllPrep®

DNA/RNA FFPE (Qiagen, Germantown, MD, USA). RNA concentration and quality
were measured by a Nanodrop™ spectrophotometer (Thermo Scientific, Waltham, MA,
USA) and Experion chip electrophoresis (Bio-Rad, Hercules, CA, USA). From purified
RNA, sequencing libraries were prepared using the TruSeq Small RNA Library prep kit
(Illumina, San Diego, CA, USA). The libraries were sequenced on NextSeq 500 (Illumina,
San Diego, CA, USA) at the Division of Molecular Medicine, Rud̄er Bošković Institute
(Zagreb, Croatia), or the EMBL’s Genomics Core Facility (GeneCore) (Heidelberg, Germany)
using the NextSeq 500/550 High Output Kit (Illumina, San Diego, CA, USA). Sequencing
reads were deposited in the SRA, GenBank (BioProject ID: PRJNA718204).

2.3. Analysis of NGS Data

Sequencing reads were trimmed off adapter sequences using the FastQ toolkit Bases-
pace App (Illumina). The trimmed reads were mapped onto human reference genome
assembly GRCh38.p13 using the Geneious mapper [34] (max. mismatches: 10%, max. gaps:
10%). The complete analysis of DE between replicate tumor samples and normal tissues
(expression normalization, DE calculation, calculation of statistical significance) was carried
out using the DESeq2 package [35]. The miRNAs exhibiting fold change of expression
(FC) ≥ 2.0 and statistical support of padj (p-value adjusted for multiple testing) ≤ 0.1
were extracted and further analyzed. The Adonis–Bray test [36] with 10,000 permutations
was used to test the association of global miRNA expression with the sample metadata
categories (tissue type, anatomic location, HPV status).

3. Results and Discussion
3.1. Global Characterization of miRNA Expression

Since deregulation of the cellular miRNA network is commonly observed in carcino-
genesis, we aimed to characterize the patterns of miRNA expression in a set of tissue
samples encompassing tumors from different anatomical locations and differing in HPV
status. Samples of HPV-associated tumors (anogenital and tonsillar tumor tissues), of the
corresponding HPV-negative tumors (if available), and of healthy tissues were collected
from three patients per sample type and processed for NGS. Sequencing yields ranged from
338,068 to 4,273,955 total reads per sample; the percentage of miRNA-derived reads varied
from 6.3% to 82.9% (Table S1). The expression level values were calculated for individual
miRNAs as their proportion among the total miRNA reads (Table S2).

The similarity of tissue samples based on their miRNA expression profiles is visualized
in Figure 1 by principal component analysis (PCA) and a heatmap. In both plots, the
clustering and thus the similarity of samples correlated with their anatomical locations.
Tonsillar samples formed a separated cluster. Among the anogenital samples, anal samples
clustered separately from genital samples. A notable separation was detected between the
genital (i.e., cervical and vulvar) samples. All cervical tumors, all vulvar HPV-negative
tumors, and one vulvar HPV-positive tumor were distinct from normal cervical and vulvar
tissues and two vulvar HPV-positive tumors; the extent of dissimilarity of their miRNA
expression profiles was readily discernable in both PCA and the heatmap (Figure 1). The
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Adonis–Bray test revealed that the miRNA expression was most significantly associated
with anatomical location (anal/cervical/vulvar/tonsillar; p = 0.0001) and tissue type
(tumor/nonmalignant; p = 0.001) of samples. This is in accordance with miRNA expression
being long recognized to exhibit tissue-specific and tumor-specific differences [37–40]. The
association with HPV status (positive/negative) was weaker and not significant (p = 0.074).
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Figure 1. Clustering of tissue samples by miRNA expression profiles. (a) PCA plot; (b) heatmap plot.
The heatmap color scale depicts log-transformed abundance values of individual miRNAs among
total miRNA sequencing reads. Visualizations were carried out in ClustVis [41].
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3.2. Differential Expression of miRNA in SCCs

We compared miRNA expression between tumor and normal tissues of the same
locations, identifying miRNAs which exhibited differential expression (DE). This type of
comparison is particularly suitable for pointing out the miRNAs whose deregulation is
linked with carcinogenesis. Figure 2a shows the total numbers of deregulated miRNAs in
the seven tumor types differing in anatomical location and HPV status. The total numbers
of deregulated miRNAs varied greatly among tumor types. Cervical HPV-positive tumors
exhibited the highest number of deregulated miRNAs, followed by vulvar HPV-negative
tumors. This is in accordance with the marked separation of the miRNA expression profiles
of these tumor samples from all other tissues as seen in Figure 1. On the opposite end of
the spectrum of miRNA deregulation, HPV-positive vulvar tumors yielded only a single
downregulated miRNA (see below). Again, this was mirrored in the clustering of miRNA
expression profiles; 2/3 of vulvar HPV-positive tumor samples were intermingled between
normal vulvar tissues (Figure 1).

The cross-tumor comparison revealed that the largest proportion of deregulated
miRNAs was specific to a single tumor type (149/239 and 94/210 upregulated and down-
regulated miRNAs, respectively; Figure 2b). The numbers of miRNAs which exhibited
shared deregulation decreased with the increasing extent of common deregulation among
the seven tumor types. Both upregulated and downregulated miRNAs followed this pat-
tern (Figure 2b). Downregulated miRNAs were more abundant than upregulated miRNAs
among the most widely deregulated miRNAs. Specifically, 58 vs. 68, 28 vs. 28, 4 vs. 14, and
0 vs. 6 miRNAs (upregulated vs. downregulated) exhibited shared deregulation in two,
three, four, and five tumor types, respectively (Figure 2b). No miRNA was deregulated
in more than five tumor types. The miRNAs whose deregulation was detected in most
tumor types of the set are likely to play a conserved role in tumorigenesis. A literature
search confirmed that all six miRNAs downregulated in 5/7 tumor types were determined
to function as tumor suppressors in SCCs (Table 1). Notably, the sole miRNA downregu-
lated in HPV-positive vulvar cancers (MIR451A) was present among these most widely
deregulated miRNAs.

Table 1. The most commonly deregulated miRNAs which exhibited downregulation in 5/7 studied tumor types. All the
listed miRNAs were demonstrated to act as tumor suppressor miRNA in SCCs, based on their experimentally confirmed
characteristics relevant to carcinogenesis (invasiveness, proliferation).

Gene miRNA Downregulated in
(Location/HPV Status) 1 Targets in SCCs References

hsa-miR-101-3p MIR101-1 anal/−, cervical/+, tonsillar/−,
tonsillar/+, vulvar/−

CDK8, COX-2, CXCR7, EZH2, FOS,
JAK2, MALAT1, TGFBR1, ZEB1 [42–52]

hsa-miR-10b-5p MIR10B anal/−, cervical/+, tonsillar/−,
tonsillar/+, vulvar/− HOXA1, IGF1R, TIAM1 [53–55]

hsa-miR-29c-3p MIR29C anal/−, cervical/+, tonsillar/−,
tonsillar/+, vulvar/− CCNE, ITGA6, LAMC2 [56,57]

hsa-miR-30a-5p MIR30A anal/−, cervical/+, tonsillar/−,
tonsillar/+, vulvar/− FOXD1, FZD2, MEF2D, WNT2 [58–60]

hsa-miR-451a MIR451A cervical/+, tonsillar/−,
tonsillar/+, vulvar/−, vulvar/+

CDKN2D, ESDN, KIF2A,
MAP3K1, PDPK1 [61–64]

hsa-miR-195-5p MIR195 anal/+, cervical/+, tonsillar/−,
tonsillar/+, vulvar/−

ARL2, BCL2, CCND1, CCND2, CDC42,
DCUN1D1, HDGF, MYB, ROCK1,

SMAD3, SMAD7, TRIM14, VEGF, YAP1
[65–78]

1 FC ≥ 2.0, padj ≤ 0.1.



Biomolecules 2021, 11, 764 6 of 15

37

18

139

68

36

64

0

52

21

143

48

34

99

1
0

20

40

60

80

100

120

140

160

 tonsillar,
HPV-

negative

tonsillar,
HPV-

positive

vulvar,
HPV-

negative

vulvar,
HPV-

positive

N
um

be
r 

of
 d

iff
er

en
tia

lly
 e

xp
re

ss
ed

 m
iR

N
A

s upregulated

downregulated

cervical,

tumor type

HPV-
negative

HPV+

HPV-

HPV-

HPV+

HPV+
HPV-

77 

14 

4 41

10 

5 

1 

4 1 

1 5 

3 

1 

2 

29 

1 

5 

3 

1 

3 

5 6 

3 
2 

1 

3 

2 

1 

3 
1 

2 

1 

(37)

(68)
(18)

(36)

(64)

(139)

48 

19 

13 

9 

5 

3 2 

2 

2 

1 

42 

9 

5 
7 

3 3 

4 
6 

1 

1 

4 

3 

1 
1 4 

2 

4 5 

upregulated miRNAs downregulated miRNAs

anal,

tonsillar,
tonsillar,

anal,

vulvar,

cervical,
HPV+

HPV-

HPV-

HPV+

HPV+
HPV-

(52)

(48)
(21)

(34)

(99)

(143)

anal,

tonsillar,
tonsillar,

anal,

vulvar,

cervical,

upregulated miRNAs downregulated miRNAs

1 2 3 4 5

Sum of all individual 
miRNAs deregulated in

94

68

28

14 6

149

58

28
4

HPV-
positive

(a)

(b)

(c) 1 5 10 20 40 60 miRNAs

HPV+
(1)

vulvar,

out of 7 tumor types

HPV-
positive

anal, anal,

Figure 2. DE of miRNAs in tumors of different locations and HPV status. (a) Total numbers of differentially expressed
miRNAs in each of the seven analyzed tumor types. (b) The miRNAs that exhibited shared deregulation across the seven
studied tumor types. The values denote the total numbers of miRNAs which were deregulated specifically in one tumor
type and those whose deregulation was common to two, three, four, or five tumor types. No miRNAs were deregulated
in more than five tumor types. (c) Venn diagrams depicting the numbers of unique and shared differentially expressed
miRNAs among the seven studied tumor types. The font size range is denoted in the legend. Zero values were omitted. The
placement of the sole miRNA deregulated in HPV-positive vulvar tumors (MIR451A) is marked with a red dot. DE values
were calculated with respect to normal tissues and filtered (FC ≥ 2.0, padj ≤ 0.1; see Materials and Methods). For DE values
of individual miRNAs, see Table S3. Venn diagrams were created using InteractiVenn [79].

3.3. Limited Role of HPV in miRNA Deregulation

Since infection with high-risk HPV16 is a key factor which delineates tumors between
and within different anatomical locations, we investigated whether infection with HPV is
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functionally translated into a common set of deregulated miRNAs. Core HPV miRNAs
were focused on in two previous studies [19,32]; however, both analyses were limited
to two groups of HPV-positive tumors (cervical and head and neck SCCs). Figure 2c
shows that the miRNAs which exhibited deregulation only in HPV-positive tumors were
present in minute numbers. Specifically, a single miRNA (miR-146a-5p) was upregulated
exclusively in HPV-positive anal and cervical tumors, and a single miRNA (miR-210-3p)
was upregulated exclusively in HPV-positive anal and tonsillar tumors. Both miRNAs have
been previously shown to be involved in tumorigenesis. The deregulation of miR-146a-
5p was observed in many types of cancers (reviewed in [80]), including cervical tumors
where it functions as oncomiR, stimulating proliferation of cells [81]. MiR-210-3p was
characterized as a hypoxia-regulated miRNA involved in many biological processes and
was shown to be overexpressed in many tumors including head and neck cancer [82]. Five
miRNAs (miR-663a, miR-769-5p, miR-1307-5p, miR-3196, miR-4800-3p) were upregulated
and three miRNAs (miR-139-5p, miR-142-5p, miR-574-3p) were downregulated exclusively
in HPV-positive tonsillar and cervical tumors. Downregulation of miR-139-5p and miR-
574-3p in HPV-positive tonsillar and cervical tumors is in agreement with the results
reported by Lajer et al. [19]. The deregulation of both miRNAs was observed in many
other cancer types; the role of miR-139-5p as a tumor suppressor was confirmed in cervical
tumors and head and neck tumors [83,84]; however, the function of miR-574-3p was not
studied in these types of tumors. No miRNA was deregulated in more than two types
of exclusively HPV-positive tumors (Figure 2c, Table S3). Therefore, our results do not
support the existence of universal “Core HPV” miRNAs whose deregulation is dependent
on HPV infection.

In our set of seven SCC types, the highest similarity in miRNA deregulation was
detected between cervical and HPV-negative vulvar tumors. These tumors exhibited the
largest total numbers of deregulated miRNAs (Figure 2a). Of all the miRNAs deregulated
in HPV-negative vulvar tumors, 69% and 76% (upregulated and downregulated miRNAs,
respectively) were also deregulated in cervical tumors. Twenty-nine upregulated miRNAs
and 42 downregulated miRNAs exhibited exclusive deregulation in both cervical and
vulvar HPV-negative tumors (Figure 2c). For these miRNAs, we mined available literature
for experimental evidence of their role in carcinogenesis of SCCs, i.e., of the effect on
cell proliferation and invasiveness. While information was lacking for most upregulated
miRNAs, 81% of downregulated miRNAs were experimentally characterized (Table 2). Of
these 34 miRNAs, 30 were determined to function as tumor suppressors (17—in cervical
carcinomas, 13—in other types of SCCs); their downregulation observed here is thus in
line with their carcinogenic role in SCCs. Since the widespread downregulation of tumor
suppressor miRNAs in vulvar HPV-negative tumors is independent of HPV infection, it
should be considered convergent with cervical tumors.

Unless diagnosed early, cervical cancers are notorious for their poor prognosis; the
otherwise high mortality is kept in check only by strenuous screening and HPV vaccination.
In our set of SCCs, cervical carcinomas exhibited the most extensive miRNA deregulation
(Figure 2a). Among vulvar carcinomas, the prognosis (survival rate) of HPV-negative
tumors is far worse than that of HPV-positive tumors [85,86]; due to additional differences
other than HPV status, both types of vulvar carcinomas are regarded as separate rather
than related cancer types [87]. With respect to the total extent of miRNA deregulation,
vulvar SCCs with differing HPV status are fundamentally different (extensive vs. negligible
deregulation; Figure 2a); our findings thus tentatively suggest that the pattern of miRNA
deregulation might be linked to the severity of gynecological malignancies. The current
understanding of molecular mechanisms of vulvar carcinogenesis is extremely limited [88].
The downregulation of multiple tumor suppressor miRNAs detected in this study suggests
a possible mechanism contributing to a severe course of vulvar HPV-negative cancers.
Interestingly, differences in the prognosis [33] and miRNA deregulation pattern [32] were
also previously found between HPV-positive and HPV-negative tonsillar tumors, although
their potential connection has not been investigated yet.
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Table 2. MicroRNAs exclusively downregulated in both cervical HPV-positive and vulvar HPV-negative tumors. The designation of individual miRNAs as tumor suppressors or
oncogenes is based on their experimentally confirmed characteristics relevant to carcinogenesis (invasiveness, proliferation). Literature mining was aimed primarily at studies on cervical
cancers; if none were available, experimental evidence for other types of SCCs was collected.

Gene miRNA
Cervical Cancer Vulvar HPV-Negative Cancer

Function in SCCs SCC Type 1 Targets ReferencesFC of
Expression padj FC of

Expression padj

hsa-miR-103b MIR103B1 16.8 1.2 × 10−4 11.3 4.7 × 10−3 Tumor suppressor OSCC SALL4 [89]
hsa-miR-107 MIR107 15.8 8.6 × 10−3 12.9 1.5 × 10−2 Tumor suppressor CC MCL1 [90]

hsa-miR-125b-5p MIR125B1 6.4 1.8 × 10−3 14.6 3.7 × 10−7 Tumor suppressor CC PIK3CD [91]
hsa-miR-136-3p MIR136 31.6 1.0 × 10−7 6.5 1.1 × 10−2 Tumor suppressor CC E2F1 [92]

hsa-miR-148a-3p MIR148A 22.4 3.2 × 10−8 13.3 4.7 × 10−5 Tumor suppressor ESCC, OSCC MAP3K9, IGF1R [93,94]
hsa-miR-148b-3p MIR148B 10.4 6.7 × 10−3 10.4 3.2 × 10−2 Tumor suppressor CC CASP3 [95]
hsa-miR-152-3p MIR152 11.8 8.8 × 10−5 3.7 6.8 × 10−2 Tumor suppressor CC KLF5 [96]
hsa-miR-16-5p MIR16-1 7.2 3.8 × 10-3 10.8 1.8 × 10−4 Tumor suppressor OSCC AKT3, BCL2L2 [97]
hsa-miR-17-5p MIR17 22.3 6.4 × 10−3 11.0 3.7 × 10−2 Tumor suppressor CC TP53INP1 [98]

hsa-miR-199a-3p MIR199A1 38.2 4.4 × 10−9 10.7 9.3 × 10−4 Tumor suppressor HNSCC ITGA3 [99]
hsa-miR-199a-5p MIR199A1 4.8 2.0 × 10−3 4.5 1.2 × 10−2 Tumor suppressor HNSCC, OSCC SOX4, IKK2, ITGA3 [99–101]
hsa-miR-199b-3p MIR199B 34.1 7.8 × 10−9 10.6 9.3 × 10−4 Tumor suppressor HNSCC ITGA3 [99]
hsa-miR-199b-5p MIR199B 13.1 3.2 × 10−8 9.3 3.2 × 10−4 Tumor suppressor HNSCC ITGA3 [99]
hsa-miR-211-5p MIR211 15.6 3.0 × 10−2 58.2 2.4 × 10−5 Tumor suppressor CC SPARC [102]
hsa-miR-218-5p MIR218-1 11.4 1.2 × 10−3 4.3 9.3 × 10−2 Tumor suppressor CC IDO1 [103]
hsa-miR-222-3p MIR222 5.7 7.8 × 10−4 3.8 2.0 × 10−2 Tumor suppressor CC ALDH1 [104]
hsa-miR-23a-3p MIR23A 3.7 1.9 × 10−2 3.2 6.8 × 10−2 Tumor suppressor OSCC FGF2 [105]
hsa-miR-24-3p MIR24-1 7.5 3.0 × 10−4 9.9 9.3 × 10−4 Tumor suppressor LSCC S100A8, XIAP [106,107]

hsa-miR-27a-3p MIR27A 4.0 6.0 × 10−3 3.2 4.5 × 10−2 Tumor suppressor CC TGFBRI [108]
hsa-miR-27b-3p MIR27B 5.5 2.9 × 10−3 6.8 1.3 × 10−3 Tumor suppressor ESCC NFE2L2 [109]
hsa-miR-30d-5p MIR30D 2.4 7.7 × 10−2 2.7 7.6 × 10−2 Tumor suppressor ESCC EZH2 [110]
hsa-miR-33a-5p MIR33A 6.0 3.6 × 10−2 12.2 2.8 × 10−2 Tumor suppressor CC TWIST1 [111]
hsa-miR-376c-3p MIR376C 45.4 9.0 × 10−6 12.8 1.8 × 10−2 Tumor suppressor CC BMI1 [112]
hsa-miR-411-5p MIR411 67.3 4.1 × 10−5 8.9 6.6 × 10−2 Tumor suppressor CC STAT3 [113]
hsa-miR-99a-3p MIR99A 12.5 6.7 × 10−4 26.9 1.1 × 10−3 Tumor suppressor CC TRIB2 [114]
hsa-miR-99a-5p MIR99A 4.2 4.4 × 10−2 17.7 3.7 × 10−7 Tumor suppressor CC TRIB2 [114]

hsa-let-7a-5p MIRLET7A1 9.5 2.5 × 10−4 9.0 9.3 × 10−4 Tumor suppressor CC PKM2, TGFBR1 [115,116]
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Table 2. Cont.

Gene miRNA
Cervical Cancer Vulvar HPV-Negative Cancer

Function in SCCs SCC Type 1 Targets ReferencesFC of
Expression padj FC of

Expression padj

hsa-let-7b-5p MIRLET7B 4.3 2.4 × 10−3 2.7 7.7 × 10−2 Tumor suppressor CC KIAA1377 [117]

hsa-let-7c-5p MIRLET7C 14.0 4.0 × 10−5 11.8 2.4 × 10−5 Tumor suppressor ESCC, HNSCC CTHRC1, IGF1R,
HMGA2 [118,119]

hsa-let-7e-5p MIRLET7E 19.3 3.4 × 10−4 5.8 3.7 × 10−2 Tumor suppressor HNSCC CCR7 [120]
hsa-miR-106b-5p MIR106B 6.2 3.8 × 10−2 8.4 3.0 × 10−2 oncogene CC DAB2 [121]
hsa-miR-130a-3p MIR130A 37.4 1.6 × 10−8 8.4 6.9 × 10−3 oncogene CC RUNX3 [122]
hsa-miR-141-3p MIR141 3.7 3.8 × 10−2 3.1 6.9 × 10−2 oncogene CC FOXA2 [123]
hsa-miR-4454 MIR4454 7.8 3.3 × 10−4 5.2 2.6 × 10−2 oncogene CC ABHD2, NUDT21 [124]

hsa-miR-191-5p MIR191 8.0 5.2 × 10−5 5.8 2.8 × 10−3 n.d.
hsa-miR-3074-5p MIR3074 7.5 3.0 × 10−4 9.9 9.3 × 10−4 n.d.

hsa-miR-3195 MIR3195 3.0 9.2 × 10−2 3.6 5.7 × 10−2 n.d.
hsa-miR-4286 MIR4286 5.2 5.1 × 10−2 6.0 4.1 × 10−2 n.d.

hsa-miR-6510-3p MIR6510 10.7 4.3 × 10−2 13.4 1.9 × 10−2 n.d.
hsa-miR-660-5p MIR660 20.0 5.7 × 10−4 7.1 3.4 × 10−2 n.d.
hsa-miR-887-3p MIR887 8.8 1.7 × 10−3 4.2 3.5 × 10−2 n.d.

hsa-let-7f-5p MIRLET7F1 7.4 2.8 × 10−4 5.0 3.1 × 10−3 n.d.
1 CC: cervical carcinoma; ESCC: esophageal SCC; HNSCC: head and neck SCC; LSCC: laryngeal SCC; OSCC: oral SCC; n.d.: not determined (no experimental evidence for SCC available).
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In conclusion, this study demonstrates that miRNA deregulation in various SCC types
is largely tumor-specific and that the HPV status of SCCs is not a determinant of either
the extent or the composition of the deregulated miRNA pool. Our findings may provide
useful directions for further studies on the pathogenesis of individual types of SCCs with
respect to their differences in anatomical location and HPV status.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biom11050764/s1, Table S1: Yields of sequencing reads in sample tissues, Table S2: Relative
expression of miRNAs in sample tissues, Table S3: Differentially expressed miRNAs in different
tumor types.
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