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and Škarková A (2023) The emerging role
of microtubules in invasion plasticity.
Front. Oncol. 13:1118171.
doi: 10.3389/fonc.2023.1118171

COPYRIGHT

© 2023 Legátová, Pelantová, Rösel, Brábek
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The emerging role of
microtubules in invasion plasticity

Anna Legátová1,2, Markéta Pelantová1,2, Daniel Rösel1,2,
Jan Brábek1,2 and Aneta Škarková1,2*

1Department of Cell Biology, Charles University, Prague, Czechia, 2Biotechnology and Biomedicine
Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czechia
The ability of cells to switch between different invasive modes during metastasis,

also known as invasion plasticity, is an important characteristic of tumor cells that

makes them able to resist treatment targeted to a particular invasion mode. Due to

the rapid changes in cell morphology during the transition between mesenchymal

and amoeboid invasion, it is evident that this process requires remodeling of the

cytoskeleton. Although the role of the actin cytoskeleton in cell invasion and

plasticity is already quite well described, the contribution of microtubules is not yet

fully clarified. It is not easy to infer whether destabilization of microtubules leads to

higher invasiveness or the opposite since the complex microtubular network acts

differently in diverse invasive modes. While mesenchymal migration typically

requires microtubules at the leading edge of migrating cells to stabilize

protrusions and form adhesive structures, amoeboid invasion is possible even in

the absence of long, stable microtubules, albeit there are also cases of amoeboid

cells where microtubules contribute to effective migration. Moreover, complex

crosstalk of microtubules with other cytoskeletal networks participates in invasion

regulation. Altogether, microtubules play an important role in tumor cell plasticity

and can be therefore targeted to affect not only cell proliferation but also invasive

properties of migrating cells.
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1 Introduction

Cells have adopted various migration/invasion modes which vary in their nature of force

generation and dependency on cell-cell and cell-extracellular matrix (ECM) adhesion.

Collective migration requires both cell-cell and cell-ECM adhesion, mesenchymal

migration omits intercellular adhesion but strongly relies on cell-ECM contact and

amoeboid migration can be independent of adhesion altogether. The large range of

invasion modes ensures physiological migration of cells in various environments, but in

the hands of cancer cells it has become a dangerous trait. The ability of cancer cells to utilize

one or more of the invasion modes, and to switch among them in response to changing

circumstances is termed invasion plasticity and represents a large complication on the road to

treating metastatic disease.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1118171/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1118171/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1118171&domain=pdf&date_stamp=2023-02-13
mailto:aneta.skarkova@natur.cuni.cz
https://doi.org/10.3389/fonc.2023.1118171
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1118171
https://www.frontiersin.org/journals/oncology
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Due to the requirements for dynamic changes of cell morphology

during invasion, it is evident the invading cell must readily reorganize

its cytoskeleton (1–4). This is even more prominent in cells with high

invasion plasticity that switch among the elongated mesenchymal and

round amoeboid phenotype, in a process termed mesenchymal-

amoeboid transition (MAT) or amoeboid-mesenchymal transition

(AMT) (5–7). During MAT, cells retract protrusions, round up and

initiate intense membrane blebbing, which may be due to loss in cell

adhesivity (8) and/or fast increase of hydrostatic pressure that

detaches the membrane from the cortex (9). The rapid membrane

blebbing is often reduced after transitioning to a motile amoeboid

phenotype. Opposingly, AMT is accompanied by loss of blebbing

activity and cell elongation through stabilization of protrusions.

Actin reorganization in migrating cells is well described, with

RhoGTPases playing a key role (10). Rac and Cdc42 are known to be

responsible for promoting actin polymerization leading to the formation

of lamellipodia and filopodia as a result of stimulating the Arp2/3

complex through activation of either WASP or SCARE/WAVE family

(11–13). Due to its function as an initiator of lamellipodia formation, Rac

is preferentially active at the leading edge of migrating cells (14).

Opposingly, RhoA activity is higher at the cell rear, where its signaling

mediates rear contractility and detachment (15). This is achieved by

RhoA-mediated activation of ROCK, which in turn leads to

phosphorylation (therefore inhibition) of MLCP, resulting in higher

phosphorylation of the myosin light chain and increased contractility

(16, 17). ROCK is also responsible for the phosphorylation of LIMK and

subsequently of cofilin, which stabilizes actin bundles (18), resulting in

formation of stress fibers. Due to the different requirement of protrusive
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activity and contractility of mesenchymal and amoeboid migration, each

is dominated by different RhoGTPase signaling. Amoeboid cells require

RhoA/ROCK signaling for their migration and inhibition of this pathway

leads to a switch to mesenchymal invasion (19, 20). Similarly, inducing

constitutively active RhoA/ROCK can induce the mesenchymal-to-

amoeboid switch (21, 22). On the other hand, Rac signaling promotes

mesenchymal traits (23, 24).

Moreover, signaling mediated by RhoGTPases interconnects the

actin cytoskeleton with the microtubule (MT) network (Figure 1). For

example, in fibroblasts, MTs growth stimulates Rac1 activity,

therefore promoting lamellipodia formation (25, 26). On the other

hand, Rac1/Cdc42 signaling can lead to MTs polymerization via

stathmin inhibition (27, 28), and RhoA can promote stabilization of

MTs by its effector, mDia1, which interacts with MTs and induces

their capping and alignment with actin bundles (29, 30).

Apart from actin, MTs also interact with intermediate filaments

(IFs). This can be either indirectly through linker proteins, such as

APC, or directly, and the mutual interaction stabilizes MTs and

promotes directed migration (31, 32).

The role of microtubules in cell migration is multifaceted,

encompassing intracellular transport and delivery of migration

associated cargo, protrusion stabilization and regulation of

adhesions (33–35). Less is known about the role of microtubules in

3D migration, yet alone specifically in amoeboid or mesenchymal

invasion. Thus, we would like to summarize current knowledge on the

role of microtubule cytoskeleton in cell invasion in the context of

mesenchymal and amoeboid phenotypes and transitions among

them (Figure 2).
A B

FIGURE 1

Microtubules and RhoGTPase signaling. (A) The length and stability of MTs in migrating cells is interconnected with RhoGTPase signaling and depends on
cell polarization. MTs preferentially elongate toward the leading edge, where their growth is enhanced by various MT end-binding proteins and MT
stabilizing proteins, which further interact with numerous Rac1 and Cdc42 activators (see TRIO, TIAM and complex IQGAP/CLIP-170). At the leading
edge, Rac1 and Cdc42 signaling contributes to actin polymerization (pink network), but also MT stabilization by phosphorylation of stathmin. MT stability
at the leading edge is supported by p27Kip, which binds stathmin, preventing its activation. Similarly, p27Kip prevents RhoA pathway activation. On the
contrary, at the trailing edge, MTs are depolymerized and Rho/ROCK signaling pathway dominates. Stathmin is not phosphorylated by Rac1 or Cdc42
and remains active – able to sequester tubulin dimers and destabilize MTs. MT disruption leads to release, and thus activation, of GEFH1 from MTs into
the cytoplasm, where it promotes activation of the RhoA/ROCK pathway. Roman numerals labeling MTs refer to part (B) of the Figure. (B) Schematic
illustration showing interaction between MT stabilizing (green)/destabilizing (red) factors and RhoGTPases. Created with BioRender.com.
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2 Microtubule associated proteins in
cell migration

The stability and dynamics of the MT network are modulated by

numerous MT associated proteins, some of which have been directly

linked to cell invasion plasticity, see below and in Figure 1.
2.1 EB1

End binding protein 1 (EB1) binds +end of MTs, localizing to the

distal tips of MTs, the centrosome or MT ends in the mitotic spindle.
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It is sometimes referred to as the „master regulator of plus-end-

tracking proteins (+TIPs)” for its ability to recruit various +TIPs and

thus influence not only MTs themselves, but other processes such as

membrane-anchoring or actin polymerization as well (36). EB1

binding to MTs stimulates MT elongation, whereas its dissociation

causes slower growth of MTs and can influence cells’ direction of

movement (37). Interestingly, depletion of EB1 has much bigger

consequences on migration and protrusion branching in 3D

migration. Whereas in 2D there is no significant effect on

protrusions and overall migration speed, in 3D, depleting EB1 in

mesenchymally migrating cells results in slower invasion and defects

in cell directionality (38). In mesenchymal cells, EB1 mediates the

binding of proteins CLASP1 and SLAIN2 to MTs, which contributes
FIGURE 2

Microtubules in different invasive modes. In mesenchymal cells (left), MTs are elongated and stabilized at the front and depolymerized at the retracting
end. Mesenchymal cells contain many adhesion structures, such as focal adhesions and invadopodia, that are tightly coupled to MT dynamics. At the
leading edge, protrusive activity is regulated by CLASP and SLAIN, which reduce MT catastrophes and contribute to MT growth persistence and
elongation of protrusions. In mesenchymal cells, GEFH1 is predominantly bound to MTs, which keeps it in an inactive state. On the other hand,
amoeboid migration modes (right) are generally associated with a less stable MT network. Accordingly, increased stathmin activity or downregulation of
MT-stabilizing proteins such as mDia2 or p27Kip has been shown to cause the mesenchymal-amoeboid transition (MAT). In pseudopodal amoeboid
cells, MTs contribute to circumnavigation and pseudopod extension. In blebby amoeboid cells, MTs are generally disrupted and thus MT-destabilizing
drugs, such as vincristine and nocodazole, promote transition to the blebby amoeboid phenotype. In amoeboid cells, GEFH1 can be found free in the
cytoplasm, where it activates the RhoA/ROCK pathway. Note that the MTOC is located in front of the nucleus in both mesenchymal and amoeboid cells,
although in some pseudopodal amoeboid cells, such as leukocytes, the MTOC is found at the cell rear. This information, together with the basic
characteristics of the individual invasion modes, is summarized in the table at the bottom of the figure. Created with BioRender.com.
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to their growth persistence in protrusions by reducing catastrophes

(Figure 2). This was shown to be necessary for the invasive shape and

3D mesenchymal invasion (39).
2.2 IQGAP

IQ motif-containing GTPase-activating protein 1/2/3 (IQGAP1-

3) are scaffold proteins that integrate many signaling pathways via

direct and indirect binding of over 90 proteins (40), including

RhoGTPases (Figure 1).

IQGAP proteins directly affects the dynamics of both the actin

and the microtubule cytoskeleton. IQGAP1 is able to cross-link F-

actin filaments (41–44) or by binding barbed ends of actin filaments,

inhibit their growth, and protect them from depolymerization (42).

IQGAP1 interacts with N-WASP and Arp2/3 forming a complex able

to nucleate branched actin filaments (45, 46). In agreement, IQGAP1

was shown to be localized at the leading edges of polarized cells and in

the lamellipodia of motile cells (43, 44, 46–48). One of the main

functions of IQGAP1 is anchoring MTs to the cell cortex enabling

directional movement.

With regard to MTs in migration, one of the main functions of

IQGAP1 is anchoring MTs to the cell cortex enabling directional

movement, a process regulated by multiple mechanisms. IQGAP1

interacts with +TIP CLIP-170 and activated Rac1 and Cdc42 (but not

RhoA) forming a tripartite complex leading MTs to the cortex to areas

with activated Rac1/Cdc42. Impaired binding of IQGAP1 caused by

mutation at its C-terminus results in multiple leading edges in cells

(49, 50). In addition, IQGAP1 and active Rac1/Cdc42 form a complex

with adenomatous polyposis coli (APC) cortical filaments and

depletion of either APC or IQGAP1 inhibits polarized migration

(51). Another +TIP linking IQGAP1 to MTs at the cell cortex is

protein SKAP (+TIP known to bind to EB1), yet again, disrupting the

interaction of SKAP and IQGAP1 impairs cell migration (52).

Overall, IQGAP1 overexpression can promote cell migration and

neurite outgrowth, while its depletion leads to decreased cell

migration (47, 53, 54), providing evidence that the actin/

microtubule crosstalk is necessary for polarized, directed

cell movement.
2.3 Navigators

Navigator proteins 1-3 (NAV1/2/3) are microtubule + end

binding proteins that are implicated in axon guidance and neurite

outgrowth in the brain (55, 56). In neurons, NAV1 is localized at the

neurite tips where it binds actin-rich domains and crosslinks with

the MTs in an EB1-dependant manner (55, 57). It also forms a

complex with the protein TRIO, a guanine nucleotide exchange

factor (GEF) known to activate Rac1 and RhoG (56–59). Thus,

NAV1 does not influence MTs polymerization per se, but it

promotes +end rescue and prevents catastrophes in the F-rich-

domain periphery. Cells depleted in NAV1 were shown to be

defective in migration during embryonic development (55).

Similarly, NAV3 binds to MTs +end via EB1 and increases their

polarized growth in response to EGF signaling in cancer cells by

protecting them from catastrophes. Cells overexpressing NAV3
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displayed higher MTs acetylation and resistance to nocodazole

treatment, both distinctive of stabilized MTs (60). On the other

hand, cells depleted in NAV3 showed more random migration and

lost the ability to migrate persistently after EGF induction (60).

Since persistent, protrusion dependent migration is characteristic of

mesenchymal cells, Navigators are likely to be more crucial for

mesenchymal than amoeboid migration.
2.4 Stathmin 1

Stathmin, also known as oncoprotein 18 (Opt18), is an important

microtubule destabilizing protein able to cause MT depolymerization.

Two modes of action have been described – first, by stimulating MT

catastrophes (61), and second, by sequestrating ab tubulin dimers to

prevent their assembly (62) - which seems to depend on

environmental conditions (63).

Stathmin is regulated by several kinases, and its phosphorylation

on at least one of its four serins suppresses its destabilizing activity

(64, 65). Moreover, Stat3 can bind to stathmin at its tubulin-binding

site to prevent its function (66). Similarly, p27Kip (see further)

binding prevents stathmin-regulated MT destabilization (67, 68). Of

note, p27Kip expression is partially regulated by Stat3 (69).

The regulation of stathmin phosphorylation is key for cell

migration, as it enables creation of a gradient of MT stability from

the leading edge to the trailing edge. At the leading edge, high levels of

Cdc42 and Rac1 prevent stathmin activation (27) resulting in

stabilized MTs in these parts of the cell. On the trailing edge

stathmin is not phosphorylated by Cdc42 or Rac and its MTs-

destabilizing activity increases, leading to MT network disassembly

and proper contraction of this end during cell movement

(70) (Figure 1).

Generally, stathmin is a strong pro-migratory factor as evidenced

by a number of studies (67, 71), although in in certain conditions its

inhibition may stimulate migration (66). This may be dependent on

whether the cells utilize the mesenchymal and amoeboid type of

invasion, since stathmin SQ18E, which is unable to undergo

inhibitory phosphorylation, was directly linked to promotion of the

round, amoeboid-like phenotype in sarcoma cells (71) (Figure 2).
2.5 P27Kip

Protein p27Kip is mainly known for its nuclear role as a cyclin

dependent kinase inhibitor and thus inhibitor of cell cycle progression

(72). However, it also plays an important role in the cytoplasm where

it interacts with other proteins through its C-terminal domain to

modulate cell motility and tumor progression (67, 73, 74). One of the

interaction partners of p27Kip is stathmin, binding of which inhibits

stathmin´s activity leading to more stable MTs. In mesenchymal cells,

this interaction limits migratory potential (67, 68) (Figure 1).

P27Kip does not influence only the MT network, it also affects

actin filament reorganization. It was shown that p27Kip is able to

interact with RhoA, inhibiting its ability to bind GEFs and thus

preventing its activation (73). Cytoplasmatic p27Kip affects the actin

cytoskeleton also indirectly via Rac1 dependent actin rearrangement

and polymerization, leading to an increase in cell migration (75).
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Of note, transformed fibroblasts lacking p27 Kip adopted a

rounded morphology with cortical actin formation and loss of b1
integrin clusters, corresponding to the mesenchymal-amoeboid

transition (76). Here both the actin and MT cytoskeleton were

altered, showing a synergic effect of p27 Kip in regulation of cell

invasion. In macrophages, p27 Kip contributes to the onset of

mesenchymal migration by inhibition of RhoA/ROCK and lack of

p27 Kip promotes amoeboid migration (77). Collectively, cytoplasmic

p27 regulates invasion plasticity and exerts pro-mesenchymal

signaling (Figure 2).
2.6 mDia2

mDia2 protein (mammalian homolog of Drosophila diaphanous;

also known as DIAPH3) belongs to the group of formins (78), which

are proteins involved in actin nucleation and elongation. In addition,

mDia2 is able to bind and stabilize MT polymers. Its silencing leads to

MT catastrophes and rewires EGFR and ERK signaling, resulting in

increased ameboid traits (79). A different study showed that mDia2 in

complex with its inhibitor induces amoeboid morphology in cells

(80). Accordingly, depletion of mDia2 promoted individual

dissemination of amoeboid cells from tumor spheres (81).

Importantly, this affects cancer treatment, since cells without

mDia2, exerting unstable MTs and amoeboid characteristics, are

more susceptible to taxane chemotherapy (82). Overall, mDia2

regulates invasion plasticity through MT stabilization and actin

nucleation, and its absence promotes the amoeboid invasion

phenotype (Figure 2), suggesting its pro-mesenchymal role.
2.7 GEFH1

An important molecule which interconnects MT dynamics and

the actomyosin network is guanosine exchange factor H1 for GTPase

RhoA (GEFH1), also known as ARHGEF2. GEFH1 is a one of the few

GEFs that associate with polymerized microtubules. Upon MT

depolymerization, GEFH1 is released and its guanosine exchange

activity increases, leading to higher activation of RhoA and its

downstream signaling (Figure 1). This mechanism regulates RhoA

activity in different parts of the migrating cell based on MT dynamics

(83). Of note, GEFH1 activity can be further potentiated by

phosphorylation mediated by Src kinase at the protruding cell edge

(84). GEFH1 also affects focal adhesions (FAs) turnover in migrating

cells and dysfunctional GEFH1-RhoA activation can disrupt cell

motility (83). In lymphoma cells, Stat3 signaling induced

destabilization of MTs, which led to the release of GEFH1 and as a

result, amoeboid invasion (85).

In summary, the GEFH1-RhoA signaling pathway is induced by

MTs destabilization, and its extent promotes either mesenchymal or

amoeboid migration. In mesenchymal cells, activation of this pathway

by dynamic growth of MTs contributes to protrusion regulation and

faster FA turnover. In cells with disrupted MTs, GEFH1-RhoA

signaling dominates and induces amoeboid invasion through the

RhoA/ROCK pathway (Figure 2).
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2.8 MAPs (MAP1B, MAP4, MAP2)

There is also a large group of microtubule associated proteins

(MAPs) that bind to MTs, but surprisingly, despite their unified

function of stabilizing MT, they have different roles in tumor

progression and may function as both pro- and anti-metastatic

factors (86–88). We hypothesize that this inconsistency may be due

to the different dependency of the amoeboid and mesenchymal

migration on the MT network. Specifically, a change in invasive

behavior was connected to MAP1B, MAP2, MAP4 and MAP7.

Although there is no direct link between invasion plasticity and

MAPs described so far, they likely participate by indirect signaling

affecting RhoGTPases signaling. For example, MAP1B increases Rac1

activity through interaction with TIAM-1, a Rac1-GEF (89). Another

possible mechanism involves phosphorylation of MAP4, which

inhibits its MT stabilizing activity (90) and leads to MT disruption,

which can increase RhoA through GEHH1 release (91).
2.9 Microtubule organizing center
in invasion

For efficient cell migration, cells need to be polarized to maintain

directionality of movement. The polarity of the cell is determined,

amongst others, by the position of the nucleus and centrosome,

forming the nuclear-centrosomal axis. By moving the centrosome,

also known as the microtubule organizing center (MTOC), to a

different position within the cell, the polarity of a cell can be

shifted (92).

When cells gain a mesenchymal migratory phenotype, the

centrosome position shifts to a central position in front of the

nucleus relative to the future movement of the cell (93). However,

this positioning of the centrosome is not a rule, as some studies show

localization of the centrosome behind the nucleus (94, 95). Some

studies also show that the position of the centrosome is influenced by

the geometrical limitation of the cell’s surroundings rather than its

function (96).

In most amoeboid cells, the location of the MTOC corresponds to

mesenchymal cells. Interestingly though, in amoeboid leukocytes, the

MTOC is placed behind the nucleus toward the cell rear (Figure 2)

(97, 98) and participates in the path finding mechanism. Once the

cell’s nucleus, which represents the bulkiest part of the cell, and the

associated MTOC successfully pass through a pore, protrusions

directed to the smaller pores are retracted and the cell continues its

movement through the path of least resistance. In this case, disrupting

MTs leads to loss of cell coherency and results in fragmentation of the

cell (97).
3 Microtubules and cell adhesive
structures in invasion

One of the main distinctions between ameboid and mesenchymal

migration is their adhesion-dependency. Unlike ameboid cells that do

not require stable ECM attachment for their movement,

mesenchymally migrating cells establish numerous interactions with
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the ECM, including the formation of integrin-based adhesions and

proteolytically active structures that enable contact-driven invasion

(Figure 2) (99–101). Microtubules play a role in regulation and

dynamics of these adhesive structures and are therefore an integral

part of signaling regulating adhesion-dependent invasion.
3.1 Focal adhesions

FAs are integrin-based structures responsible for strong adhesion

of cells to the ECM. Importantly, they also transmit information

about the surrounding environment such as its stiffness by signaling

to cytoskeleton associated proteins (102–104). Both Rac and RhoA

play role in FA regulation – whereas Rac activity is prominent in the

formation of FAs, RhoA activity and Rac inhibition are needed for the

maturation of FAs (105, 106).

The main role of MTs within FAs is the transport of integrins and

metalloproteases (MMPs) to the cell membrane and the regulation of

FAs turnover (107). Although there is no evidence of direct binding of

MTs to FAs so far, MTs are known to be guided towards them and

anchored in their proximity (108–111). The targeting of mature FAs

by MTs results in FA disassembly and cell edge retraction, and

preventing the contact between MTs and FAs leads to enlarged FAs

(112). In agreement, nocodazole-induced MTs depolymerization also

results in larger FAs, whereas MT regrowth after nocodazole washout

disassembles FAs (112–114). Nevertheless, these studies were done in

2D environments, where the structure, composition and dynamics of

FAs is different than in 3D environments (115), and many

mechanisms valid in 2D systems are yet to be verified for

3D migration.
3.2 Podosomes

Podosomes and invadopodia are similar actin-based structures

that play role in cell migration and ECM degradation, which is a key

feature of mesenchymal invasion. Whereas podosomes are small, dot-

like dynamic structures at the leading edge or organized rings

exhibiting shallow ECM degradation, invadopodia are larger,

irregularly shaped clusters usually localized in the central area of

the cell. They are less dynamic and form outstretched extensions into

the matrix resulting in deeper and more focused ECM

degradation (116).

An intact MT network is necessary for the formation of

podosomes since MT depolymerization (induced e.g. by

nocodazole) leads to podosomal disassembly (117, 118). MTs are

directed to podosomes through +TIPs such as EB1 and CLASPs (119,

120). Targeting of podosomes by MTs is associated with their higher

dynamics, and podosomes without MTs show increased stability

similarly to FAs (109, 112, 121).

The lifespan of MTs in podosomal structures is regulated by

RhoGTPases. Inhibition of RhoA is able to increase the stability of

MTs in podosomes, promoting podosome belt assembly (122).

Accordingly, activation of RhoA leads to podosome disassembly

through the RhoA/ROCK/MLCP axis as actomyosin contractility

increases podosomes turnover and their disassembly (123–125).
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Altering Cdc42 and Rac1 activity was also shown to disrupt

podosomes (118, 122, 126).
3.3 Invadopodia

Invadopodia are invasive structures commonly found in various

cancers (127). Unlike podosomes, microtubules are not required for

invadopodia formation but are necessary for their elongation and

correct function (128, 129). Invadopodia first form as a smaller actin-

based structure with microtubules excluded from their core (130).

Only after maturation of invadopodia, intermediate filaments and

microtubules (typically 1-2 MTs per protrusion) invade their

structure and allow invadopodia elongation. The microtubules that

invade the shaft of invadopodia are stable, whereas at the base of the

invadopodium more dynamic MTs are found (128). Accordingly, MT

depolymerization does not affect the formation of small invadopodia,

but limits their elongation and maturation (129).

One important role of MTs in invadopodia is the polarized

trafficking of components such as matrix MMPs to the cell

membrane (128, 131, 132). Moreover, the MT associated protein

IQGAP1 accumulates in invadopodia where it interacts with exocyst

components, and this interaction promotes invadopodia proteolysis

by accumulation of MT1-MMP in a MT-regulated manner (133).

Also, the exocytosis of MMP2 and MMP9 in melanoma cells is MTs-

dependent (132) supporting the role of MTs in trafficking

invadopodia components.
4 Microtubules and ECM conditions

It is well known that the conditions of the surrounding

environment and its physical properties largely influence the choice

of the migration mode. Amoeboid cells favor the large pores found in

less dense ECM (134, 135) or confining conditions (100, 136), while

mesenchymal cells with their proteolytic activity are able to migrate

through stiff ECM and take advantage of the increased number of

adhesion sites (101, 135, 137). Unsurprisingly, the MT network is

receptive to ECM cues via posttranslational modifications that

respond to ECM stiffness such as acetylation and glutamylation.

Generally, acetylated MTs are more stable and resilient. The

acetylation of a tubulin is driven by a tubulin N-acetyltransferase 1

(aTAT1), and opposingly, histone deacetylase 6 (HDAC6) elicits

tubulin deacetylation. Confusingly, both acetylation and deacetylation

have been linked to accelerated cell migration. aTAT1 stabilizes MTs

at the leading edge of migrating cells to promote cell motility and

tumor progression (138). HDAC6 elicits pro-invasive signaling by

activating Rho family GTPase, specifically by Rac1 (139). In addition

to MTs, aTAT1 and HDAC6 are able to acetylate/deacetylate other

substrates, such as cortactin. Cortactin contributes to actin filament

assembly and is also required for MT1-MMP delivery to the leading

edge of migrating cell (140), a process important for mesenchymal

migration of tumor cells (141).

A recent study describes that ECM characteristics, MT dynamics

and cell metabolism are interlinked to regulate cell invasion. Stiff

substrates induce the conversion of glutamine to glutamate,
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increasing MT stability by glutamylation, resulting in an invasive

phenotype and metastasis of breast cancer cells (142). However, a

different study showed that higher density of collagen destabilizes

MTs and induces GEFH1 mediated RhoA signaling (143).

Another characteristic of the surrounding environment that

affects cell migration is oxygen availability. Hypoxia leads to MT

depolymerization as a consequence of MAP4 and stathmin

phosphorylation (144, 145). Subsequently, MTs depolymerization

promotes RhoA activity by releasing GEFH1, a mechanism known

to promote amoeboid invasion. In agreement, hypoxic conditions

trigger the collective-amoeboid transition (146).
4.1 Microtubule targeting drugs

Microtubule drugs, due to their immense effect on MT structure

and dynamics, have extensive impact on cell behavior. They are

commonly used as chemotherapeutic agents based on their ability to

arrest cell proliferation and cause cell death (147). Nevertheless, MT

drugs exhibit more extensive behavior than just antimitotic effects,

including deregulation of cell migration (148). They also interfere

with invasion plasticity manifesting different effects on each invasion

mode. Drugs inhibiting MT polymerization promote the amoeboid

mode as it is less MT-dependent (Figure 2). For example, vincristine

which is able to sequester tubulin dimers and prevent MT

polymerization, induces the amoeboid phenotype through GEFH1/

RhoA signaling (149). Similar results were observed with nocodazole,

which also leads to MT disassembly and subsequent RhoA activation

(150). In fibroblasts, nocodazole treatment prevented cells to adopt an

elongated morphology and instead induced a round morphology,

typical of the amoeboid phenotype (151). Treatment of cells with

paclitaxel (taxol) stabilizes microtubules, but does not promote

mesenchymal migration, instead it induces a non-motile phenotype

(152–154). In lymphocytes that utilize the amoeboid migration mode,

taxol treatment inhibited migration in both 2D and microstructured

environments, whereas nocodazole treatment increased membrane

blebbing without increase in migration in 2D (155), but was able to

promote amoeboid invasion in 3D (156).

The wide clinical usage of classic MT drugs is hampered by

notable drug resistance and toxicity, fueling the chase for novel

compounds with improved characteristics (157), many of which are

in clinical trials (158). Moreover, in recent years it has become evident

that the requirement for anti-metastatic behavior should be evaluated

as well as primary growth shrinkage (159–162). In point of fact, the

prototypic antimitotic drugs paclitaxel and vincristine can in certain

instances promote metastasis (163, 164). On the other hand,

vinorelbine treatment in mice reduced metastasis more effectively

than primary tumor growth (165). Another microtubule inhibitor,

eribulin, exerts migrastatic behavior both in experimental conditions

(166, 167) and in patients with advanced metastatic breast

cancer (168).

Taken together, a suitable combination of microtubule drugs with

invasion specific inhibitors could synergically target cell proliferation

and both amoeboid and mesenchymal invasion, i.e., elicit both anti-

proliferative and migrastatic effects.
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The invasion phenotype is a result of the orchestration of all three

cytoskeletal systems. Here, we have summarized evidence that MT

dynamics can directly affect cancer invasion plasticity and described

its role in both amoeboid and mesenchymal cells (Figure 2).

Nevertheless, the contribution of the individual cytoskeletal

components specifically during the transitions between amoeboid

and mesenchymal invasion modes remains to be described. For

example, it is not clear whether during MAT the disintegration of

MTs precedes, follows, or accompanies formation of the actomyosin

cortex. Moreover, the cells´ reaction to the rearrangement of the MTs

network is dependent on several factors including differences between

2D and 3D environments, cell type, RhoGTPase signaling or presence

of MT drugs, and thus the role of MTs in invasion is not uniform.

Above mentioned evidence shows that amoeboid migration is

possible even if MTs are unstable or depleted and destabilization of

MTs can directly induce amoeboid invasion. This is contrary to the

finding that MTs are retained in amoeboid leukocytes and in fact

promote migration by contributing to path-finding mechanisms or

protrusion retraction (97, 169). These seemingly contradictory

findings may be explained by the existence of multiple types of

amoeboid invasion that include blebby, stable-bleb and

pseudopodal subtypes that differ in their extent of adhesion, and

protrusive and contractile activity, which occur based on cell type

and/or ECM conditions (99, 170, 171). For example, leukocytes are

known to adopt the pseudopodal amoeboid mode, which is

dependent on MT and actin-driven pseudopod extension. On the

other hand, the highly contractile bleb-based amoeboid modes are

reliant on actomyosin activity, but do not require MTs (171)

(Figure 2). Interestingly, the varying structure of the MT network

in amoeboid cells is reflected also in Amoebozoa, unicellular protists

after which the amoeboid migration mode is named. Based on

immunocytochemistry staining of MTs, in some amoebae MTs are

present as short cytoplasmic fibers, other contain long, parallel MT

bundles and in some cases fibrous MTs where not detected at all

(172). It thus seems that indeed forms of amoeboid migration

dependent and independent on MT network exist.

On the other hand, mesenchymal migration requires the role of MT

for multiple processes. Especially at the leading edge MTs contribute to

extension and stabilization of protrusions, but also to formation of

adhesive and proteolytic structures. However, pharmacological

stabilization of MTs limits migration and invasion of cells, suggesting

that excessive stabilization halts migration altogether.

In this context, it is not easy to conclude whether increased

depolymerization of MTs leads to higher invasiveness or the opposite.

On the contrary, what we can confirm is that MT dynamics directly

affects the ability of the cell to choose among the invasive modes that

are most profitable for them under the given conditions.
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5. Paňková K, Rösel D, Novotný M, Brábek J. The molecular mechanisms of transition
between mesenchymal and amoeboid invasiveness in tumor cells. Cell Mol Life Sci (2010)
67(1):63–71. doi: 10.1007/s00018-009-0132-1

6. te Boekhorst V, Friedl P. Plasticity of cancer cell invasion–mechanisms and
implications for therapy. In: Advances in cancer research. Elsevier (2016). p. 209–64.
Available at: https://linkinghub.elsevier.com/retrieve/pii/S0065230X16300562.
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in solid cancer towards metastasis? Trends Cancer (2019) 5(12):755–6. doi: 10.1016/
j.trecan.2019.10.011

162. Solomon J, Rasǩova M, Rösel D, Brábek J, Gil-Henn H. Are we ready for
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